
Float Introduction
• Floats were made to increase the range of values to include very small and large reals
• This added range comes at the cost of less precision

• Remember: N bits represents only 2N things, but no more
• Done with normalized binary numbers (only one nonzero bit left of binary point)
• IEEE 754 standard: (-1)sign x 1.significand x 2(exponent-127)

sign exponent significand

1 bit 8 bits 23 bits

• Notice: Implicit 1 to the left of binary point, significand is only to the right
• Exponent uses biased notation (Range of [-127, +128] shifted to [0, 255]). Why?
• Floats also use Sign & Magnitude. Why is this ok for floats?

Special Cases for Floats

Exponent Significand Meaning

0 0 zero

0 non-zero denormalized

1-254 (MAX-1) anything float

255 (MAX) 0 +/- infinity

255 (MAX) non-zero NaN (Not a Number)

Denormalized Numbers
• Were made to fill in between 2-126 and 0
• Denormalized comes from number not being normalized (there is no longer a 1 before

binary point)
• Has an implicit exponent of -126 and no longer has an implicit 1 in mantissa
• Thus they take the form: (-1)sign x 0.significand x 2-126

Doubles
• Were made to increase the precision and the range of floats
• Same format as floats just with more bits and and a MAX of 2047
• Double format: (-1)sign x 1.significand x 2(exponent-1023)

sign exponent significand

1 bit 11 bits 52 bits

Floating Point Questions
• What is the largest float < infinity? 1.11111111111111111111111 x 2127 0x7f7fffff
• What is the smallest positive float? 0.00000000000000000000001 x 2-126 0x00000001
• Say you wanted to make the float in $t0 8 times bigger, and all you had available were

add, addi, and sll. How would you do it? (Assuming the float < 2124)
 addi $t1, $0, 3 sll $t1, $t1, 23 add $t0, $t0, $t1

CS 61C
Spring 2010

Week 7 (3/2)
Scott Beamer (cs61c-ta)

Floats and Other Details

MAL vs. TAL
• TAL (True Assembly Language): MIPS with no pseudo-instructions and strict enforcement

of the ISA
• TAL has a direct 1:1 mapping with raw bits, where each TAL instruction corresponds

to exactly 1 instruction the CPU will execute
• MAL (MIPS Assembly Language): MIPS where pseudo-instructions are allowed

• An instruction with improper arguments is also a pseudo-instruction (add $t0, $t0, 2)
• Some MAL instructions correspond to multiple instructions when assembled
• Done to increase programmer (or compiler) productivity

Assembling Exercise
• Be the first pass of the assembler and convert the following MAL instructions to TAL:

MAL TAL

 li $s0, 0xdeadbeef lui $s0, 0xdead
 ori $s0, $s0, 0xbeef

 add $t2, $t3, 0xcafebebe lui $at, 0xcafe
 ori $at, $at, 0xbebe
 add $t2, $t3, $at

 bge $s2, -3, exit (exit is PC+8) slti $at, $s2, -3
 beq $at, $0, 1

 swap $t0, $t1 add $at, $0, $t1 xor $t0, $t0, $t1
 add $t1, $0, $t0 or xor $t1, $t0, $t1
 add $t0, $0, $at xor $t0, $t0, $t1

 lw $t0, $t1($t2) add $at, $t1, $t2
 lw $t0, 0($at)

• How would you implement the inc instruction? (inc $rt,imm → R[rt] = R[rt] + imm)
add $rt, $rt, imm

• How about the freeze instruction? Once the processor executes freeze, it will never
execute anything else.

beq $0, $0, -1

