Logic Gates

- Looking at what XNOR does, can you think of another name for it? Equality test
- How many different two-input logic gates are possible? $2^{4}=16$
- Build NOT, AND, OR, and XOR using only NAND. To save yourself writing, once you have built a gate, you can re-use it.

Pipelining Problem

- The circuit below computes the weighted average of 4 values
- Logic Delays $-\mathrm{t}_{\text {mult }}=55 \mathrm{~ns}, \mathrm{t}_{\text {add }}=19 \mathrm{~ns}, \mathrm{t}_{\text {shift }}=2 \mathrm{~ns}$
- Register Parameters $-\mathrm{t}_{\text {setup }}=2 \mathrm{~ns}$, $\mathrm{t}_{\text {hold }}=1 \mathrm{~ns}, \mathrm{t}_{\mathrm{clk}-\mathrm{to}-\mathrm{q}}=3 \mathrm{~ns}$
-What is the critical path delay and the maximum frequency this circuit can operate at? delay $=3 \mathrm{~ns}+55 \mathrm{~ns}+19 \mathrm{~ns}+19 \mathrm{~ns}+2 \mathrm{~ns}+2 \mathrm{~ns}=100 \mathrm{~ns} \Rightarrow \max$ frequency $=10 \mathrm{MHz}$
- If you add one stage of registers (pipelining), what is the highest frequency you can get? delay $=3 \mathrm{~ns}+55 \mathrm{~ns}+2 \mathrm{~ns}=60 \mathrm{~ns} \Rightarrow>\max$ frequency $=16.66 \mathrm{MHz}$

Boolean Simplification Practice

- Minimize the following boolean expressions:
$(A+B)(A+\bar{B}) C$

AC
$\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+$
$A \bar{B} \bar{C}+A B C+A \bar{B} C$

$$
\overline{\mathrm{C}}+\mathrm{AC}
$$

$\mathrm{A} \oplus \mathrm{B}$
Finite State Machine Practice

- Draw a finite state machine for this system.
increment, decrement/output

- Assign states binary encodings and complete a truth table for your FSM.

Increment	Decrement	Current State	Next State	Output
0	0	00	00	00
0	1	00	11	00
1	0	00	01	00
1	1	00	xx	00
0	0	01	01	01
0	1	01	00	01
1	0	01	10	01
1	1	01	xx	01
0	0	10	10	10
0	1	10	01	10
1	0	10	11	10
1	1	10	xx	10
0	0	11	11	11
0	1	11	10	11
1	0	11	00	11
1	1	11	xx	11

- Starting from sum-of-product expressions from the truth table, derive simplified expressions for next state as well as the output.
- Output = State
- $\mathrm{NSO}=\mathrm{CS} 0 \oplus(\mathrm{I}+\mathrm{D}) \quad \mathrm{NS} 1=\mathrm{CS} 1 \overline{\mathrm{I}} \overline{\mathrm{D}}+(\mathrm{CS} 0 \oplus \mathrm{CS} 1) \overline{\mathrm{I}} \mathrm{D}+(\mathrm{CS} 0 \oplus \mathrm{CS} 1) \mathrm{I} \overline{\mathrm{D}}$

