
Name: _________Answers______________________ Login: cs61c-____

2/6

Question 1: Potpourri: hard to spell, nice to smell… (14 pts, 36 min)

Questions (a) and (b) refer to the C code to the
right; pretend you don’t know about MIPS yet.

a) In which memory sections (code, static, heap,
stack) do the following reside?

arg stack arr static

*str heap val code

 #define val 16

 char arr[] = "foo";

 void foo(int arg){

 char *str = (char *) malloc (val);

 char *ptr = arr;

 }

 sizeof sizeof(arr) != sizeof(ptr)
 ++ (arr++ crashes, ptr++ does not)

b) Name a C operation that would treat arr and ptr differently: ________________________________

You peek into the text part of an a.out file and see that the left six bits of an instruction are 0x02.
As a result of executing this instruction… opcode=0x02 �� jump 2^28 – 4

c) What’s the most that your PC could change? Be exact. ________________________________
 0

d) What is the least? ________________________________

e) Write a getPC function, which returns the address
of the jal instruction calling it.
(two instructions should be sufficient)

 addiu $v0, $ra, -4
getPC: _______________________________

 jr $ra

f) Which of the best-, first-, next-fit schemes would succeed for all 5 of the following sequence of

malloc and free requests on a malloc-able region of memory only 8 bytes long? Circle those that
would and show the resulting contents of memory for each one. E.g., After the “a=malloc(4)” call, all
schemes should have the leftmost 4 boxes labeled “a”. A pencil is useful (or draw “a” lightly).

 a = malloc(4); b = malloc(1); free(a); c = malloc(3); d = malloc(4);

d d d d b c c c c c c b d d d d b c c c

(best-fit) first-fit (next-fit)

g) In one sentence, why can’t we use automatic memory management in C?

C is weakly typed; any variable could be a pointer.

h) To reduce complexity for your software company, you delete the Compiler, Assembler and Linker
and replace them with a single program, CAL, that takes all the source code in a project and does the
job of all three for all the files given to it. Overall, is this a good idea or bad idea? Why or why not?

BAD idea! A change to only one file requires recompiling/reassembling all!

Name: _________Answers______________________ Login: cs61c-____

3/6

Question 2: Player’s got a brand new bag… (15 pts, 36 min)

We want to add an inventory system to the adventure game so that the player can collect items. First,
we’ll implement a bag data structure that holds items in a linked list. Each item_t has an associated
weight, and each bag_t has a max_weight that determines its holding capacity (see the definitions
below). In the left text area for item_node_t, define the necessary data type to serve as the nodes in a
linked list of items, and in the right text area, add any necessary fields to the bag_t definition.

typedef struct item {
 int weight;
 // other fields not shown
} item_t;

c) Complete the add_item() function, which should add item into bag only if adding the item would not
cause the weight of the bag contents to exceed the bag’s max_weight. The function should return 0 if
the item could not be added, or 1 if it succeeded. Be sure to update the bag’s current_weight. You
do not need to check if malloc() returns NULL. Insert the new item into the list wherever you wish.

int add_item(item_t *item, bag_t *bag) {
 item->weight + bag->current_weight > bag->max_weight
 if (___) {
 return 0;
 }
 (item_node_t *) malloc(sizeof(item_node_t));
 item_node_t *new_node = ___

 // Add more code below…

 new_node->item = item;
 new_node->next = bag->contents;
 bag->contents = new_node;
 bag->current_weight += item->weight;

 return 1;
}

(d) Finally, we want an empty_bag() function that frees the bag’s linked list but NOT the memory of the
items themselves and NOT the bag itself. The bag should then be “reset”, ready for add_item. Assume
that the operating system immediately fills any freed memory with garbage. Fill in the functions below.

void empty_bag(bag_t *bag) {
 bag->contents
 free_contents(______________________);

 // FILL IN HERE
 bag->current_weight = 0;
 bag->contents = NULL;

}

 item_node_t *c
void free_contents(_________________) {

 // FILL IN HERE

 if (c == NULL) return;
 free_contents(c->next);
 free(c);

}

typedef struct item_node {
 // (a) FILL IN HERE

 item_t *item;
 struct item_node *next;

} item_node_t;

typedef struct bag {
 int max_weight;
 int current_weight;
 // add other fields necessary
 // (b) FILL IN HERE

 item_node_t *contents;

} bag_t;

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 3 – Structs, etc cs61c-te@imail.eecs.berkeley.edu

 (e) Now suppose that we care about the order of items in our bag. However, because we’re
clumsy, the only possible way for us to rearrange items is to reverse their order in the list.
void reverse_list(bag_t *bag) {

item_node_t *next, *node = bag->contents;
bag->contents = NULL;

while (node) {
 next = node->next; // Keep track of the next node.
 node->next = bag->contents; // Current node points to what’s
 // currently reversed.
 bag->contents = node; // Now current node is head of
 // currently reversed list.
 node = next; // Examine the next node, which we
 // saved.
}

}

Bonus: You have five jars of pills. All the pills in one jar only are "contaminated." The

only way to tell which pills are contaminated is by weight. A regular pill weighs 10

grams; a contaminated pill is 9 grams. You are given a scale and allowed to make just one

measurement with it How do you tell which jar is contaminated?

Take out 1 pill from jar 2, 2 pills from jar 3, 3 pills from jar 4, and 4 pills from jar 5. Put

them all on the scale. If it reads 100 grams, then none of the pills you took out was

contaminated, so jar 1 is the culprit. If it reads 99, jar 2 is contaminated, 98 corresponds

to jar 3, 97 jar 4, 96 jar 5.

	03struct_sol
	03structsol.pdf

