

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/8 Week 11 – Pipelining cs61c-tf@imail.eecs.berkeley.edu

Quick Review
Convert the truth table in the exercise below into

a reduced sum of products Boolean expression.

Programmable Logic Arrays

It is cumbersome to build a custom circuit out of individual gates; so programmable logic

components can be configured to implement arbitrary logic, and yet can still be manufactured as

standard components. PLAs directly implement sum of products expressions, making them very

good for control implementations. Field Programmable Gate Arrays (FPGAs) are more advanced

versions that can be reprogrammed and are in general cooler (internal registers, etc).

PLA Exercise

Draw in wires in the diagram that implement the following truth table:

ABC F

000 0101

001 1000

010 0000

011 0010

100 1111

101 1001

110 1111

111 1111

F0 = ¬BC + A

F1 = BC + AB

F2 = A¬B¬C + ¬ABC + AB

F3 = A + ¬B¬C

It wasn’t possible to reduce F2 to two-input ANDs and ORs, as the diagram suggested.

Pipelining
Any process that goes through a series of distinct steps can be made more efficient through

pipelining. The basic idea is to handle multiple tasks in parallel (at the same time) in order to

make full use of your resources (washing machines, ALUs, etc).

Latency – the time it takes to process a single task completely (measured in seconds)

Throughput – the total amount of tasks completed in a period of time (measured in tasks per

second)

Pipelining improves total throughput, not the latency of an individual instruction. This means

that a single instruction will take the same amount of time or even longer, but over a longer

period of time a pipelined processor can get more done.

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/8 Week 11 – Pipelining cs61c-tf@imail.eecs.berkeley.edu

MIPS Pipelining

MIPS, keeping with its simplicity, is typically implemented with a 5-stage pipeline (as long as

the ISA is maintained it could implemented in any way)
The five MIPS pipeline stages:

* Instruction Fetch (IF) - Computes the next PC, and requests the next instruction from

Memory

* Instruction Decode (ID) - Reads the registers, and starts to set the control signals based on

the instruction

* Execute (EX) - Does the actual computation specified by the operation (includes

computing the memory address for memory instructions)

* Memory (MEM) - Performs the needed operation from memory - reads for load

instructions and writes for store instructions
* Write Back (WB) - Writes back the results of the operation to the Register File

Hazards
Structural Hazards – Hazards that occur due to competition for the same resource (register file

read vs. write back, instruction fetch vs. data read). These are solved by caching and clever

register timing.

Control Hazards – Hazards that occur due to non-sequential instructions (jumps and branches).

These cannot be solved completely by forwarding, so we’re forced to introduce a branch-delay

slot.

Data Hazards – Hazards that occur due to data dependencies (instruction 2 requires the result of

instruction 1). These are mostly solved by forwarding, but lw still requires a bubble.

Pipelining Exercises
Suppose you’ve designed a MIPS processor implementation in which the stages take the

following lengths of time: IF=20ns, ID=10ns, EX=20ns, MEM=35ns, WB=10ns. What is the

minimum clock period for which your processor functions properly? Where should the bulk of

your R&D budget go for the next generation of processors?

Memory is the bottleneck, limiting to the period to 35ns, so it needs more R&D.

Your friend tells you that his processor design is 10x better than yours, since it has 50 pipeline

stages to your 5. Is he right? (This is intentionally vague)

No for a variety of reasons, including more complexity and more costly flushes

Rewrite the following program to minimize hazards (assume the cleverest HW possible):
Find: lbu $t0, 0($a0) Find: lbu $t0, 0($a0)

 addi $a0, $a0, 1 addi $a0, $a0, 1

 bne $t0, $a1, Find bne $t0, $a1, Find

 nop add $v0, $0, $0 #A

 add $v0, $0, $0 Loop: addi $t1, $a0, 1

Loop: addi $v0, $v0, 1 lbu $t0, 0($t1)

 addi $t1, $a0, 1 addi $v0, $v0, 1 #B

 lbu $t0, 0($t1) sb $t0, 0($a0)

 sb $t0, 0($a0) bne $t0, $0, Loop

 addi $a0, $a0, 1 addi $a0, $a0, 1 #C

 bne $t0, $0, Loop jr $ra

CS 61C Spring 2010 TA: Michael Greenbaum

Section 114/8 Week 11 – Pipelining cs61c-tf@imail.eecs.berkeley.edu

 nop

 jr $ra

A: branch delay slot – it doesn’t hurt to execute the instruction in each

loop iteration. One instruction saved

B: load delay slot – One inst saved per loop.

C: branch delay slot – One inst saved per loop.

