
 

CS 61C Spring 2010  TA: Michael Greenbaum 

Section 114/118 Week 12– Caches - Soln cs61c-tf@inst.berkeley.edu 

 

 

notes originally by Matt Johnson 

Caches! 
Conceptual Questions: Why do we cache? What is the end result of our caching, in 

terms of capability? 

 

-We cache because limited memory closer to the chip is faster. Caching gets us the 

speed of the fast memory with the spatial capacity of the largest memory. 

 

What are temporal and spatial locality? Give high level examples in software of when 

these occur. 

 

-Temporal locality – We access the same items that have been used recently. Ie., a 

commonly executed piece of code, such as a menu or library function. 

-Spacial locality – We access items nearby other items that have been accessed 

recently. This is demonstrated in structs or sequential array accesses. 

 

Break up an address:  

Tag Index Offset 

 Offset: “column index” (O bits)              

 Index: “row index” (i bits) 

 Tag: “cache number” that the block/row* came from. (T bits) [*difference?] 

Segmenting the address into TIO implies a geometrical structure (and size) on 

our cache. Draw memory with that same geometry! 

 

 

 

 

 

 

 

 

 

 

Cache Vocab: 

 Cache hit – found the right thing in the cache! Booyah! 

Cache miss – Nothing in the cache block we checked, so read from memory and 

write to cache! 

Cache miss, block replacement – We found a block, but it had the wrong tag!  

Cache Exercises! 
C1: Fill this one in… Everything here is Direct-Mapped! 

Cache Memory 

… 

2i+O
 Bytes of 

Data! 

2O columns 

2i 

rows 

Tag, 

Valid, & 

Dirty bits 
2T Cache 

Images 

Tag = 0 

Tag = 1 

Tag = 2 



 

CS 61C Spring 2010  TA: Michael Greenbaum 

Section 114/118 Week 12– Caches - Soln cs61c-tf@inst.berkeley.edu 

 

 

notes originally by Matt Johnson 
Address 

Bits 

Cache 

Size 

Block 

Size 

Tag Bits Index 

Bits 

Offset 

Bits 

Bits per 

Row 

16 4KB 4B 4 10 2 38 

16 16KB 8B 2 11 3 68 

32 8KB 8B 19 10 3 85 

32 32KB 16B 17 11 4 147 

32 64KB 16B 16 12 4 146 

32 512KB 32B 13 14 5 271 

64 1024KB 64B 44 14 6 558 

64 2048KB 128B 43 14 7 1069 

 

C2: Assume 16 B of memory and an 8B direct-mapped cache with 2-byte blocks. 

Classify each of the following memory accesses as hit (H), miss (M), or miss with 

replacement (R). 

a. 4 M 

b. 5 H 

c. 2 M 

d. 6 M 

e. 1 M 

f. 10 R 

g. 7 H 

h. 2 R 

 

C3: This composite question was inspired by exam questions but NOT identical since 

the exam questions use associative caches. Direct-mapped here! 

 

You know you have 1 MiB of memory (maxed out for processor address size) and a 16 

KiB cache (data size only, not counting extra bits) with 1 KiB blocks. 

 
#define NUM_INTS 8192 

int *A = malloc(NUM_INTS * sizeof(int)); // returns address 0x100000 

int i, total = 0; 

for (i = 0; i < NUM_INTS; i += 128) A[i]   = i; // Line 1 

for (i = 0; i < NUM_INTS; i += 128) total += A[i]; // Line 2 



 

CS 61C Spring 2010  TA: Michael Greenbaum 

Section 114/118 Week 12– Caches - Soln cs61c-tf@inst.berkeley.edu 

 

 

notes originally by Matt Johnson 
 

a) What is the T:I:O breakup for the cache (assuming byte addressing)? 

6:4:10 

 

b) Calculate the hit percentage for the cache for the line marked “Line 1”. 

Each step is 512 bytes or 128 ints. There are 256 ints per cache block. Thus we have a 

50% hit rate. 

 

c) Calculate the hit percentage for the cache for the line marked “Line 2”. 

We covered a 2^13 * 2^2 = 2^15 = 32 KiB array with our first loop, meaning we knocked 

all our cache entries out in the second pass. Same hit rate as before! 

 

d) How could you optimize the computation? 

We could have fewer cache misses if we break up the loops to cover half the array at a 

time. 

 

Now a completely different setup… Your cache now has 8-byte blocks and 128 rows, 

and memory has 22 bit addresses. The ARRAY_SIZE is 4 MiB and A starts at a block 

boundary. 

 
for (i = 0; i < (ARRAY_SIZE/STRETCH); i += 1) { 

 for (j = 0; j < STRETCH; j += 1) sum     += A[i*STRETCH + j]; 

 for (j = 0; j < STRETCH; j += 1) product *= A[i*STRETCH + j]; 

} 

 

a) What is the T:I:O breakup for the cache (assuming byte addressing)? 

12:7:3 

 

b) What is the cache size (data only, no tag and extra bits) in bytes? 

d1 KiB 

 

c) What is the largest STRETCH that minimizes cache misses? 

1024 for 1 Kibi chars. 

 

d) Given the STRETCH size from (c), what is the # of cache misses? 

One for every 8-byte block, so 4 Mi / 8 = 512 Kibi misses. Another check would be to 

say we have 128 blocks in our cache, we miss each block once per outer loop iteration, 

and we have 4 MiB / 1 KiB = 4 KiB outer loop iterations. 

 

e) Given the STRETCH size from (c), if A does not start at a block boundary, roughly 

what is the # of cache misses for this case to the number you calculated in 



 

CS 61C Spring 2010  TA: Michael Greenbaum 

Section 114/118 Week 12– Caches - Soln cs61c-tf@inst.berkeley.edu 

 

 

notes originally by Matt Johnson 
question (d) above? (e.g., 8x, 1/16th) 

Now our last block will collide with our first block, meaning the first inner loop has an 

extra miss and the second inner loop has two misses. Thus where we used to have 128 

misses per step of the outer loop, now we have 128+3 = 131 misses. 


