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Based on notes by Aaron Staley, which were in turn based on 

notes by David Jacobs. 

 

Memory Mapped I/O 
Certain memory addresses correspond to registers in I/O devices and not normal memory. 

Control Register: Indicates if it is okay to read/write data register 

Data Register:  Contains I/O data 

 

Register Location Contains 

Receiver Control 0xffff0000 Lowest two bits: Interrupt Enable Bit, Ready Bit 

Receiver Data 0xffff0004 Received data stored at lowest byte 

Transmitter Control 0xffff0008 Lowest two bits: Interrupt Enable Bit, Ready Bit 

Transmitter Data 0xffff000c Transmitted data stored at lowest byte 

 

Describe MIPS code to read a byte from the receiver and immediately send it to the transmitter. 

 

We would load a byte from the receiver data address and store it into the transmitter data address. 

 

lui $t0 0xffff 

lb $t1 4($t0) 

sb $t112($t0) 

 

Polling and Interrupts 
 

Operation Definition Pro/Con Good For 

Polling Periodically check to see if 

the device is ready to 

transfer data. 

 

 

 

+Predictable 

performance 

+Easy to implement 

-Wastes time 

repeatedly checking 

if ready 

Applications that 

require infrequent 

polling, low data 

rate. 

Interrupts Device makes an 

asynchronous request for 

data transfer. 

 

 

 

 

+Allows data 

transfer on demand 

-Overhead of saving 

state before 

invoking interrupt 

service routine. 

-If interrupts might 

occur, performance 

is less predictable. 

High data rate I/O 

that would 

otherwise be too 

expensive to poll. 

Would use lots of 

CPU when active, 

but none when 

inactive. 

 

See end of sp08 “I/O Basics” lecture for more details. 

 

Disk Organization 

Magnetic disks are one of the most common types of I/O devices. Bits are encoded by the controlling 

the polarity of magnetic fields on some sort of substrate. Since the magnetic fields do not require power 
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to be maintained, disks are considered a form of non-volatile storage. 

 
An additional term not shown here is that the collection of corresponding tracks across all the platters is 

called a cylinder. 

There are two ways to address disks. Logical addressing treats the disk drive as one big array of blocks. 

Physical addressing uses a (cylinder, sector, platter) tuple to specify a blocks physical position in the 

disk drive.  

 

Disk Performance 
Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead 

 

RAID 

Big disks are expensive (and dangerous). We can use an array of smaller disks to simulate the behavior 

of one larger disk with a more reasonable cost.   

RAID 0 No redundancy, just multiple disks 

RAID 1 Mirroring for redundancy, doubles read bandwidth 

RAID 2 Bit-level striping, increases bandwidth further 

RAID 3 Parity Disks, allows recovery from a single disk failure 

RAID 4 Block-level striping with Parity Disk, increases bandwidth 

RAID 5+ Striped Parity, reduces wear and tear 

 

Disk Exercises 
 

We have a 7200 RPM drive with 3 ms seek time and a 20 MB/sec transfer rate once the head is in place. 

Assume that the controller overhead is negligible. 

 

1) What is the overall throughput reading 1 MeBi of contiguous data on a random track? 

 

120 rotations per second = 8.33 ms / rotation. On average, we will have to wait half a rotation for the 

data to rotate under the head => 4.16 ms average rotation time. 

 

20 MB/sec transfer rate => 50 ms to transfer 1 Mebi 

 

Throughput = data/sec = 1 Mebi / (50 + 3 + 4.16)  = 17.49 Mebi/sec 

 

 

2) What is the overall throughput reading 1MeBi of data spread randomly across the drive as 8 KiBi 
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files? (this is why disk fragmentation is bad) 

50 ms spent in transfer time, as before. 

 

2^7 files, 3 ms seek time + 4.16 ms rotation time per file. 

 

Throughput = 1 Mebi / (50 + 2^7*(7.16)) = 1.03 Mebi / sec 

 

Performance Metrics 
In order to get any meaningful definition of performance, we need to develop a 

quantitative metric that we all can agree on. This is harder than it sounds. We 

briefly talked about these when discussing pipelining.  

 

Response Time, Execution Time, Latency - the time it takes to complete one task 

Throughput, Bandwidth – tasks completed per time unit 
 

Megahertz Myth 
A processor’s performance is determined by more than just the clock speed.  

 

CPU time = Instruction Count * CPI * clock period 

 

Exercises 
You are the lead developer of a new video game at AE, Inc.  The graphics are quite 

sexy, but the frame rates (performance) are horrible.  Doubly unfortunately, you 

have to show it off at a shareholder meeting tomorrow.  What do you do? 

 

 

You need to render your latest and greatest über-l33t animation. If your rendering 

software contains the following mix of instructions, which processor is the best 

choice? 

 

Operation Frequency  A’s CPI  B’s CPI C’s CPI 

ALU 30%  1 1 1 

Load 30%  3 5 3 

Store 20%  2 3 4 

Branch 20%  3 2 2 

 

Average CPI: 

 

A: 1*.3 + 3*.3 + 2*.2 + 3*.2 = 2.2 

B: 2.8 

C: 2.4 

 

A wins. 

 

What if the processors had different clock speeds? Assume A is a 1 Ghz processor, B 

is a 1.5 Ghz processor, and C is a 750 Mhz processor.  

 

1/frequency = seconds/cycle 

cycles/inst * seconds/cycle = seconds/inst, a better estimate of performance. 

 

seconds / cycle: A = 1 ns, B = .66 ns, C = 1.33 ns 

seconds / inst: A = 2.2 ns, B = 1.86 ns, C = 3.2 ns.  
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B wins. 

But wait, these processors are made by different manufacturers, and use different 

instruction sets. So the renderer (for the different architectures) takes a 

different number of instructions on each. Which is best if your main loop on A 

averages 1000 instructions; on B it averages 800 instructions; and on C it averages 

1200 instructions? 

We now have instructions/program. 

seconds/inst [from part b] * inst/program = seconds/program, the runtime. 

 

instructions / program: A = 1000, B = 800, C = 1200 

seconds/program: A = 2.2 us, B = 1.493 us, C = 3.84 us. 

B produces the fastest program, and wins. 

 

Parallel Computing 
Parallel computing refers more to multicore and multiprocessor machines. This is 

sometimes also called “supercomputing.” Since the processors are physically closer 

together, there is a potential for much faster communications between them. 

However, synchronizing the processors can prove a difficult problem. 

 

Amdahl’s Law 
The potential speedup from parallelization is limited by the amount a program can 

be parallelized. Let s be the fraction of the work that must be done sequentially 

and P be the number of processors. Then, 

 

Speedup(P) ≤ 1/s 

 

Exercise 
What are the contributing factors to Amdahl’s law? Why isn’t it an equality? 

 

This would be an equality if the runtime of the parallel portion were reduced to 0, 

ie, infinite parallelization with no overhead. Neither of these conditions hold 

true in practice, so the speedup is strictly less than this ideal value, how much 

so determined by the degree of parallelization and the (parallelization) overhead. 


