
CS 61C Spring 2010 TA: Michael

Section 114/8 Week 14 – I/O, Disks, Performance cs61c-tf@inst.eecs.berkeley.edu

Based on notes by Aaron Staley, which were in turn based on

notes by David Jacobs.

Memory Mapped I/O
Certain memory addresses correspond to registers in I/O devices and not normal memory.

Control Register: Indicates if it is okay to read/write data register

Data Register: Contains I/O data

Register Location Contains

Receiver Control 0xffff0000 Lowest two bits: Interrupt Enable Bit, Ready Bit

Receiver Data 0xffff0004 Received data stored at lowest byte

Transmitter Control 0xffff0008 Lowest two bits: Interrupt Enable Bit, Ready Bit

Transmitter Data 0xffff000c Transmitted data stored at lowest byte

Describe MIPS code to read a byte from the receiver and immediately send it to the transmitter.

We would load a byte from the receiver data address and store it into the transmitter data address.

lui $t0 0xffff

lb $t1 4($t0)

sb $t112($t0)

Polling and Interrupts

Operation Definition Pro/Con Good For

Polling Periodically check to see if

the device is ready to

transfer data.

+Predictable

performance

+Easy to implement

-Wastes time

repeatedly checking

if ready

Applications that

require infrequent

polling, low data

rate.

Interrupts Device makes an

asynchronous request for

data transfer.

+Allows data

transfer on demand

-Overhead of saving

state before

invoking interrupt

service routine.

-If interrupts might

occur, performance

is less predictable.

High data rate I/O

that would

otherwise be too

expensive to poll.

Would use lots of

CPU when active,

but none when

inactive.

See end of sp08 “I/O Basics” lecture for more details.

Disk Organization

Magnetic disks are one of the most common types of I/O devices. Bits are encoded by the controlling

the polarity of magnetic fields on some sort of substrate. Since the magnetic fields do not require power

CS 61C Spring 2010 TA: Michael

Section 114/8 Week 14 – I/O, Disks, Performance cs61c-tf@inst.eecs.berkeley.edu

Based on notes by Aaron Staley, which were in turn based on

notes by David Jacobs.

to be maintained, disks are considered a form of non-volatile storage.

An additional term not shown here is that the collection of corresponding tracks across all the platters is

called a cylinder.

There are two ways to address disks. Logical addressing treats the disk drive as one big array of blocks.

Physical addressing uses a (cylinder, sector, platter) tuple to specify a blocks physical position in the

disk drive.

Disk Performance
Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead

RAID

Big disks are expensive (and dangerous). We can use an array of smaller disks to simulate the behavior

of one larger disk with a more reasonable cost.

RAID 0 No redundancy, just multiple disks

RAID 1 Mirroring for redundancy, doubles read bandwidth

RAID 2 Bit-level striping, increases bandwidth further

RAID 3 Parity Disks, allows recovery from a single disk failure

RAID 4 Block-level striping with Parity Disk, increases bandwidth

RAID 5+ Striped Parity, reduces wear and tear

Disk Exercises

We have a 7200 RPM drive with 3 ms seek time and a 20 MB/sec transfer rate once the head is in place.

Assume that the controller overhead is negligible.

1) What is the overall throughput reading 1 MeBi of contiguous data on a random track?

120 rotations per second = 8.33 ms / rotation. On average, we will have to wait half a rotation for the

data to rotate under the head => 4.16 ms average rotation time.

20 MB/sec transfer rate => 50 ms to transfer 1 Mebi

Throughput = data/sec = 1 Mebi / (50 + 3 + 4.16) = 17.49 Mebi/sec

2) What is the overall throughput reading 1MeBi of data spread randomly across the drive as 8 KiBi

CS 61C Spring 2010 TA: Michael

Section 114/8 Week 14 – I/O, Disks, Performance cs61c-tf@inst.eecs.berkeley.edu

Based on notes by Aaron Staley, which were in turn based on

notes by David Jacobs.

files? (this is why disk fragmentation is bad)

50 ms spent in transfer time, as before.

2^7 files, 3 ms seek time + 4.16 ms rotation time per file.

Throughput = 1 Mebi / (50 + 2^7*(7.16)) = 1.03 Mebi / sec

Performance Metrics
In order to get any meaningful definition of performance, we need to develop a

quantitative metric that we all can agree on. This is harder than it sounds. We

briefly talked about these when discussing pipelining.

Response Time, Execution Time, Latency - the time it takes to complete one task

Throughput, Bandwidth – tasks completed per time unit

Megahertz Myth
A processor’s performance is determined by more than just the clock speed.

CPU time = Instruction Count * CPI * clock period

Exercises
You are the lead developer of a new video game at AE, Inc. The graphics are quite

sexy, but the frame rates (performance) are horrible. Doubly unfortunately, you

have to show it off at a shareholder meeting tomorrow. What do you do?

You need to render your latest and greatest über-l33t animation. If your rendering

software contains the following mix of instructions, which processor is the best

choice?

Operation Frequency A’s CPI B’s CPI C’s CPI

ALU 30% 1 1 1

Load 30% 3 5 3

Store 20% 2 3 4

Branch 20% 3 2 2

Average CPI:

A: 1*.3 + 3*.3 + 2*.2 + 3*.2 = 2.2

B: 2.8

C: 2.4

A wins.

What if the processors had different clock speeds? Assume A is a 1 Ghz processor, B

is a 1.5 Ghz processor, and C is a 750 Mhz processor.

1/frequency = seconds/cycle

cycles/inst * seconds/cycle = seconds/inst, a better estimate of performance.

seconds / cycle: A = 1 ns, B = .66 ns, C = 1.33 ns

seconds / inst: A = 2.2 ns, B = 1.86 ns, C = 3.2 ns.

CS 61C Spring 2010 TA: Michael

Section 114/8 Week 14 – I/O, Disks, Performance cs61c-tf@inst.eecs.berkeley.edu

Based on notes by Aaron Staley, which were in turn based on

notes by David Jacobs.

B wins.

But wait, these processors are made by different manufacturers, and use different

instruction sets. So the renderer (for the different architectures) takes a

different number of instructions on each. Which is best if your main loop on A

averages 1000 instructions; on B it averages 800 instructions; and on C it averages

1200 instructions?

We now have instructions/program.

seconds/inst [from part b] * inst/program = seconds/program, the runtime.

instructions / program: A = 1000, B = 800, C = 1200

seconds/program: A = 2.2 us, B = 1.493 us, C = 3.84 us.

B produces the fastest program, and wins.

Parallel Computing
Parallel computing refers more to multicore and multiprocessor machines. This is

sometimes also called “supercomputing.” Since the processors are physically closer

together, there is a potential for much faster communications between them.

However, synchronizing the processors can prove a difficult problem.

Amdahl’s Law
The potential speedup from parallelization is limited by the amount a program can

be parallelized. Let s be the fraction of the work that must be done sequentially

and P be the number of processors. Then,

Speedup(P) ≤ 1/s

Exercise
What are the contributing factors to Amdahl’s law? Why isn’t it an equality?

This would be an equality if the runtime of the parallel portion were reduced to 0,

ie, infinite parallelization with no overhead. Neither of these conditions hold

true in practice, so the speedup is strictly less than this ideal value, how much

so determined by the degree of parallelization and the (parallelization) overhead.

