

CS 61C Spring 2010 TA: Michael Greenbaum

 Week 2 – Pointers cs61c-tf@imail.eecs

Quick Review
N bits represent 2

N
 things:

How many bits do you need to represent 150 things? 8

Kind men give terminal pets extra zebra yolk:

2
67

 = 128 exbi

With 8 bits, what are the bit patterns for the following? For the last row, what

is the decimal value of the given bit pattern?

 Unsigned Sign & Magnitude One’s Complement Two’s Complement
-1 N/A 1000 0001 1111 1110 1111 1111
MAX 1111 1111 0111 1111 0111 1111 0111 1111
MIN 0000 0000 1111 1111 1000 0000 1000 0000
0x83 131 -3 -124 -125

In general, with N bits the max/min for unsigned is _____2^N-1______/______0_____, and for

two’s

complement the max/min is _____2^(N-1) -1_______/______-2^(N-1)_____.

What are the advantages and disadvantages of each integer representation?

-One’s C: always increasing with “binary odometer”, loops.

-Two’s C: Only one zero.

Complete the following function convert() that takes an unsigned integer as an argument, and

returns it’s value when interpreted as a sign and magnitude number:

int convert(unsigned int signMag){

 if((1<<31)&signMag) { //if MSB is one

 return –(signMag & ~(1<<31)); // mask MSB to 0 and invert

 } else {

 return signMag;

 }

}

C details
int* p1, p2, p3, p4;

Did I just declare four pointers?

Sadly, this is interpretted as: int *p1, int p2, int p3, int p4. To declare the four pointers, we would

need: int *p1, *p2, *p3, *p4.

if ((5/4) * 100 == 125) printf(“C can do math!\n”);

Did it print?

The (5/4) is interpretted as integer division, and returns a value of one; thus, the statement does

not print. We would require a conversion of one argument to floating point (ie (5/4.0) or

(5/(double)4)), instead.

CS 61C Spring 2010 TA: Michael Greenbaum

 Week 2 – Pointers cs61c-tf@imail.eecs

Pointers

Writing the function swap and complete its call.

int foo = 5;

int baz = 42;

swap(&foo,&baz);

printf(“foo is %d, baz is %d\n”, foo, baz);

/* foo is 42, baz is 5 */

void swap(int *a, int *b){

 int tmp = *a;

 *a = *b;

 *b = tmp;

}

What is the output of the following program given this snapshot of memory?

Variable (if any) a b c p x y

Address ... 171 172 173 174 175 176 177 ... 655 656 ...

Initial Value 15 19 -5 171 0 255 4 -1 8

 3 144 170 176

 144 656 -12

int main(int argc, char * argv[]){

 int a = 3, b = 144, c = 170;

 int *p;

 printf(“%d, %d, %d\n”, *p, p, &p);

 p = (int *) foo(a,&c);

 printf(“%d, %d, %d\n”, *p, p, &p);

 bar(&a, &b);

 printf(“%d, %d, %d\n”, a, b, c);

 return 0;

}

int foo (int x, int * y){

 *y = -12;

 return x + (int) y;

}

void bar (int * x, int * y){

 *x = *y;

 *y = (int) &y;

}

3, 171, 174

255, 176, 174

144, 656, -12

