
CS61C Spring 2010 Week 6 - MIPS ISA                            Section 114/118 

TA: Michael Greenbaum  cs61c-tf@imail.eecs 

The Stored Program Concept 

 All programs (instructions) are just data represented by combinations of bytes!  

 Any block of memory can be code.  Consequently, self-modifying code is possible! 

 The Program Counter (PC) is a special register (not directly accessible) which holds a 

pointer to the current instruction. 

 

Instruction Formats 

MIPS instructions come in three tasty flavors! 

 

R-Instruction format (register-to-register). Examples: addu, and, sll, jr 

op code rs rt rd shamt funct 

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 

See green sheet to see what registers are read from and what is written to 

 

I-Instruction Format (register immediate) Examples: addiu, andi, bne 

 

op code rs rt immediate 

6 bits 5 bits 5 bits 16 bits 

Note: Immediate is 0 or sign-extended depending on instruction (see green sheet) 

 

J-Instruction Format (jump format) For j and jal 

 

op code address 

6 bits 26 bits 

 

KEY: An instruction is R-Format if the op code is 0.  If the opcode is 2 or 3, it is J-format.  

Otherwise, it is I-format.  Different R-format instructions are determined by the “funct”. 

 

1. How many instructions are representable with this format? 

 

 

 

 

 

 

2. What could we do to increase the number of possible instructions? 
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MIPS Addressing Modes 

 We have several addressing modes to access memory (immediate not listed): 
o Base displacement addressing:  Adds an immediate to a register value to create 

a memory address (used for lw, lb, sw, sb) 
o PC-relative addressing:  Uses the PC (actually the current PC plus four) and 

adds the I-value of the instruction (multiplied by 4) to create an address (used by 
I-format branching instructions like beq, bne) 

o Pseudodirect addressing:  Uses the upper four bits of the PC and concatenates a 
26-bit value from the instruction (with implicit 00 lowest bits) to make a 32-bit 
address (used by J-format instructions) 

o Register Addressing: Uses the value in a register as memory (jr) 
 

 

3. You need to jump to an instruction that is 257Mb up from the current PC. How do you do it? 

(HINT: you need multiple instructions) 

 

 

 

4. You now need to branch to an instruction 129Kb up from the current PC when $t0 equals 0. 

Assume that we’re not jumping to a new 256Mb block.  Write MIPS to do this. 

 

 

 

 

5. Given the following MIPS code (and instruction addresses), fill in the highlighted instructions 

(you’ll need your green sheet!): 

 
0x002cff00: loop: addu $t0, $t0, $t0      |  0 |    |    |    |  0 |      | 

 

0x002cff04:       jal  foo                |  3 |                          | 

 

0x002cff08:       bne  $t0, $zero, loop   |  5 |  8  |                    | 

... 

 

0x00300004: foo:  jr $ra  $ra=______________________ 

 

 

6. What instruction is 0x00008A03?  

 

 

  

 

 


