
CS61C Spring 2010 Week 6 - MIPS ISA Section 114/118

TA: Michael Greenbaum cs61c-tf@imail.eecs

The Stored Program Concept

 All programs (instructions) are just data represented by combinations of bytes!

 Any block of memory can be code. Consequently, self-modifying code is possible!

 The Program Counter (PC) is a special register (not directly accessible) which holds a

pointer to the current instruction.

Instruction Formats

MIPS instructions come in three tasty flavors!

R-Instruction format (register-to-register). Examples: addu, and, sll, jr

op code rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

See green sheet to see what registers are read from and what is written to

I-Instruction Format (register immediate) Examples: addiu, andi, bne

op code rs rt immediate

6 bits 5 bits 5 bits 16 bits

Note: Immediate is 0 or sign-extended depending on instruction (see green sheet)

J-Instruction Format (jump format) For j and jal

op code address

6 bits 26 bits

KEY: An instruction is R-Format if the op code is 0. If the opcode is 2 or 3, it is J-format.

Otherwise, it is I-format. Different R-format instructions are determined by the “funct”.

1. How many instructions are representable with this format?

We count the number of possible instructions in each format:

R – 64 (op code 0, all the bits of func), I – 61, J – 2, 127 total.

The 2^12 solution additionally mentioned in section is actually incorrect – when the opcode is non-zero

the func field no longer exists – it becomes part of either the immediate field of the I format or the address

field of the J format.

2. What could we do to increase the number of possible instructions?

There are a number of possible solutions, all of which roughly take the form, “borrow bits from another

field and add them to opcode/func.” Examples of this would be sacrificing bits of the I-format immediate

for extra opcode bits. This costs us range in the immediates we can represent and the range of our branch

instructions.

CS61C Spring 2010 Week 6 - MIPS ISA Section 114/118

TA: Michael Greenbaum cs61c-tf@imail.eecs

MIPS Addressing Modes

 We have several addressing modes to access memory (immediate not listed):
o Base displacement addressing: Adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb)
o PC-relative addressing: Uses the PC (actually the current PC plus four) and

adds the I-value of the instruction (multiplied by 4) to create an address (used by
I-format branching instructions like beq, bne)

o Pseudodirect addressing: Uses the upper four bits of the PC and concatenates a
26-bit value from the instruction (with implicit 00 lowest bits) to make a 32-bit
address (used by J-format instructions)

o Register Addressing: Uses the value in a register as memory (jr)
o

3. You need to jump to an instruction that is 257Mb up from the current PC. How do you do it?

(HINT: you need multiple instructions)

257Mb from our current PC is guaranteed to lie in a separate 256 Mb block of memory, so we

cannot rely on a jump instruction to get there. Assuming the address we are jumping to is Foo:

lui $at {lower 16 bits of Foo}

ori $at $at {upper 16 bits of Foo}

jr $at

4. You now need to branch to an instruction 129Kb up from the current PC when $t0 equals 0.

Assume that we’re not jumping to a new 256Mb block. Write MIPS to do this.

Assuming our destination is the label Foo:

beq $t0 $0 DoJump

[…]

DoJump: j Foo

5. Given the following MIPS code (and instruction addresses), fill in the highlighted instructions

(you’ll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $t0 | 0 | 8 | 8 | 8 | 0 | 0x21|

0x002cff04: jal foo | 3 | 0xc0001 |

0x002cff08: bne $t0, $zero, loop | 5 | 8 | -3 = 0xfffd |

...

0x00300004: foo: jr $ra $ra=__0x002cff08___

5. What instruction is 0x00008A03?

0000 0000 0000 0000 1000 1010 0000 0011

000000 00000 00000 10001 01000 000011 – R type

sra $s1 $0 8

