Pointers

* All data is in memory. That means that each data has a memory address that maps
to it. Pointers are variables that contain the address values.

* You can dereference a pointer (put a * in front of it) to obtain the data in the given
address.

* When you initialize a pointer, you only make room in the memory for the space to
hold the pointer, NOT the space to hold the data it’s pointing to!

* You can obtain the address of any data by putting & in front of the variable name.

Write functions that achieve the given tasks. Not all of them necessarily have a solution.
1. Swaps the value of two ints declared in main.
void swap(intx a, intx b){

int temp = x*a;

*a *xb;
*b temp;

2. Increments the value of an int declared in main by one.
void increment(int xx) {

(kX)) ++;
}

/* OR x/

void increment(int xx) {
x[0]++;

}

3. Returns the number of bytes in the input string. Does not use strlen.

int mystrlen(charx str) {
int count = 0;
while (kstr++) {
count++;

}

return count;

4. Returns the number of elements in the input array ARR of ints.

You can’t. C has no way to determine an end of a sequence of ints.

Memory Management in C
5. Ip which memory sections (co_de, sdefine val 16
static, heap, StaCk) do the fOIIOWIng char arr[] = "foo";
reside? void foo(int arg){
char *str = (char *) malloc (val);
char *ptr = arr;

}

arg Stack arr Static str Stack *str Heap val Code (used in instructions)

6. What are two reasons we might need to use mallocin a C program?
-Persistence - Need to allocate memory that stays allocated beyond function exit, but which can be
freed at will.
-Dynamic allocation - Amount of memory to be allocated only known during runtime.
-Error checking - Can check during runtime whether or not a particular allocation is available. (if
there’s enough space)
7. What is wrong with the C code below?
int* ptr = malloc(4 * sizeof(int));
if(extra_large) {
ptr = malloc(10 * sizeof(int));
}
return ptr;
If extra_large is true, we have a memory leak (we lose the pointer to the memory initially
allocated).

MIPS
* 32 Registers, $16™~517 => $s0~Ss7, $8~515 => St0~St7. SO is reserved for the
value 0, and cannot be overwritten with other values.
THERE ARE NO VARIABLES IN MIPS, JUST REGISTERS.
* MIPS Instruction Format: Operand Dest, Srcl, Src2 (In most cases)
* Some example MIPS Instructions:

Instruction Syntax Example
add add dest, src0, srcl add $s0, $sl1, $s2
addi addi dest, src0O, immediate addi $s0, $s1, 12
sll / srl sll dest, src, immediate sll $t0, 4($s0)
1w / 1b 1w dest, offset (base addr) 1w $t0, 4($s0)
sw / sb sw src, offset (base addr) sw $t0, 4($s0)
C MIPS
// $s0 -> a (use $s0 for a), addi $s0, $0, 4
// $sl -> b addi $s1, $0, 5
// $s2 -> c, $s3 -> z addi $s2, $0, 6
add $s3, $s0, Ssl
int a=4, b=5, c=6, z; add $s3, $s3, S$s2
z = atb+c+10; addi $s3, $s3, 10
// $s0 -> int *p = (int *)malloc sw $0, 0($s0)
// $sl -> a (3*sizeof (int)) ; addiu $s1, $0, 2
pl0] = 0; sw $sl1, 4($s0)
int a = 2; sll $t0, $sl, 2 #multiply by 4
pll]l = a; addu $t1, $t0, $soO
plal = a; sw $s1, 0(S$tl)

