CS61C Spring 2013 Section 4 (Video Notes)

MIPS Procedures
Overview:

There are only two instructions necessary for creating and calling functions: jal
and jr. If you follow register conventions when calling functions, you will be able

to write much simpler and cleaner MIPS code.

Part I: Know your conventions:

1) How should $sp be used? When do we add/subtract from the stack pointer?

We subtract when we need to save new stuff. We add after restoring. (see lecture
notes for a great description of it in action)

2) Which registers need to be saved before using jal?

Any non-s* register (St*, Sv*, Sa*) if we plan to use it again. And always save Sra

3) Which registers need to be saved before using jr?

None. :p But we should restore any s* we modified.

4) How do we pass arguments into functions?

Sa0is first, Sal is second, Sa2 is third, Sa3 is fourth.

5) What do we do if there are more than four arguments we wish to pass?
Spill it to the stack
6) How are values returned by functions?

Return value is in Sv0. Another is allowed in Sv1 but C doesn’t do that

Page 1

CS61C Spring 2013 Section 4 (Video Notes)

Part II: More Conventions:

When calling a function in MIPS, who needs to save the following variables to the
stack? Answer R for the caller, E for the callee, or N for neither.

Sv0-Svl Sal0-S%a3 St0-5t9 $s0-Ss7 Ssp Sra

R R R E N R

Now assume our function foo calls another function bar, which is known to call
other functions. foo takes one argumentanduses $t0 and $s0. bar takes
two arguments, returns an integer, and uses $t0-$tl1 and $s0-$sl.

In the boxes below, draw a possible ordering of the stack just before bar calls a
function (you may not need all the spaces). The top of the left box is the address of
$sp when foo isfirst called and the top of the right box follows directly after the
bottom of the left box. Add “(f)” if the register is stored by foo and “(b)” if the
register is stored by bar. The first one is written in for you.

$ra (f) $v0 (b)
$s0 (f) $a0 (b)
$v0 (£) $al (b)
$a0 (f) $t0 (b)
$t0 (f) $tl (b)
$ra (b)
$s0 (b)
$s1l (b)

Page 2

CS61C Spring 2013 Section 4 (Video Notes)

Part Ill: Your very own guide to writing functions:

If you plan on calling other functions or using saved registers, you’ll need to use the
following function template. But wait! There are lines missing. Fill in the blanks:

Pro]ogue; FunctionFoo:

begin by reserving space on the stack:
addiu $sp, $sp, -FrameSize #blank 1

now, store needed registers:

sw $ra, 0($sp) #blank 2

sw $s0, 4($sp) #blank 3

. save the rest of the registers ..

sw $sx, FrameSize - 4($sp) #blank 4

Body: .. The cleanest, most elegant, and most well
commented MIPS code ever, all written by
you to do as the function intends :)

Epilogue: # restore registers:

lw $sx, FrameSize -4 ($sp) #blank 5

. load the rest of the registers..

1w $s0, 4($sp) #blank 6

lw $s0, 0(Ssp) #blank 7

release stack spaces:

addiu $sp, $sp, FrameSize {#blank 8

finally, return to normal execution:
jr $ra #blank 9

Page 3

CS61C Spring 2013 Section 4 (Video Notes)

Part IV: CS61B meets MIPS:

1) Write an insertion sort function in MIPS that uses a swap function to accomplish
the task of sorting an array of integers. The arguments to the function should be an
integer array and its size. Here is the C version of the function:

vold insertionSort (int * arr, int size) {
int 1, J; //Use 1=$t0 and j=$t1l
for(i=1;1i<size;i++)
{
J=1;
while (>0 && arr[jl<arr[j-1])
{
swap (arr, j, j-1);
J==

}

void swap (int * arr, int il, int 12) {
int temp=arr([il]; //Use temp=$t0
arr[il]=1i2;
arr[i2]=il;

*** YOUR MIPS CODE HERE ***

Swap:
sll Sal, $al, 2
sll Sa2, $a2, 2
addu $al, $al0, Sal
addu $a2, $al, Sa2
lw $t0, 0($Sal)
lw Stl, 0($Sa2?)
sw $t0, 0(%a2)
sw Stl, 0(Sal)
jr Sra
InsertionSort:

addiu sp, Ssp, -20
sw $s0, 0(Ssp)

sw $sl, 4(Ssp)

sw $s2, 8(Ssp)

sw $s3, 12 ($sp)

sw Sra, 16(Ssp)
move $s2, $al

Page 4

CS61C Spring 2013

move $s3, Sal
addiu $s0, SO,

forLoop:

1

slt $t0, $s0, $s3
beq $t0, $0, forLoopEnd

move $sl, $s0

whileLoop:

slt $t0, $0, $sl
beq $t0, $0, whileLoopEnd

sll $t0, $sl1, 2

addu $tl, $s2,
lw $t0, 0(Stl)
lw $tl, -4(s$tl)

$t0

slt $t0, S$t0, Stl
beq $t0, $0, whileLoopEnd

move $al, $s2
move al, Ssl
addiu $a2, $sl1,
jal Swap

addiu $sl1, $s1,
J whileLoop

whileLoopEnd:

addiu $s0, $s0,
J forLoop

forLoopEnd:

lw $s0, O
lw $s1, 4
lw $s2, 8(Ssp)
lw $s3, 12 (S$sp)
lw $ra, 16(S$Ssp)
addiu $sp, Ssp,
Jjr Sra

20

Page 5

Section 4 (Video Notes)

CS61C Spring 2013 Section 4 (Video Notes)

Part IV, Continued:

2) Why did we have to save registers to the stack in our code?

Because swap would blow them out — and clobber Sra

3) How did using jal and jr make life easier?

Otherwise, swap would need to know where to jump back to! We’d have to hardcode function
returns.

4) Compare: branching/jumping in a loop and jumping for function calls.

One is static (labels) and one is dynamic (functions)

Page 6

