
CS 61C Caches

Conceptual Questions: Why do we cache?

What are temporal and spatial locality? Give high level examples in software of when these
occur.

Break up an address:

Tag Index Offset

Offset: “column index”, Indexes into a block. (O bits)
Index: “row index,” Indexes blocks in the cache. (I bits)
Tag: Where from memory did the block come from? (T bits)

Segmenting the address into TIO implies a geometrical structure (and size) on our cache.
Draw memory with that same geometry!

Cache Vocab:
Cache hit – found the right thing in the cache!
Cache miss – Nothing in the cache block we checked, so read from memory and write to
cache!
Cache miss, block replacement – We found a block, but it had the wrong tag!

Cache Memory

…

2I+O Bytes of
Data!

2O columns

2I
rows

Tag,
Valid, &
Dirty bits

2T Cache
“Images”

Tag = 0

Tag = 1

Tag = 2

CS 61C Caches

1) Fill in the table assuming a direct mapped cache. (B = byte.)
Address

Bits
Cache
Size

Block Size Tag Bits Index Bits Offset Bits Bits per
Row

16 4KB 4B

16 16KB 8B

32 8KB 8B

32 32KB 16B

32 64KB 16 12 4

32 512KB 5

64 64B 14

64 2048KB 14 1068

2) Assume 16 words of memory and an 8 word direct-mapped cache with 2-word blocks (that
starts empty). Classify each of the following WORD memory accesses as hit (H), miss (M),
or miss with replacement (R).

a. 4
b. 5
c. 2
d. 6

e. 1
f. 10
g. 7
h. 2

3) You know you have 1 MiB of memory (maxed out for processor address size) and a
 16 KiB cache (data size only, not counting extra bits) with 1 KiB blocks.

#define NUM_INTS 8192
int A[NUM_INTS]; // lives at 0x100000
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) A[i] = i; // Line 1
for (i = 0; i < NUM_INTS; i += 128) total += A[i]; // Line 2

a) What is the T:I:O breakup for the cache (assuming byte addressing)?
b) Calculate the hit percentage for the cache for the line marked “Line 1”.
c) Calculate the hit percentage for the cache for the line marked “Line 2”.

CS 61C Caches

AMAT:

AMAT stands for Average Memory Access Time. It refers to the time necessary to
perform a memory access on average. It does NOT refer to the time necessary to
execute an instruction which accesses memory. Those of you in CS70 may find it
helpful to think of AMAT as E(τ), where τ is a random variable whose value is the
time necessary to perform a given memory access. The AMAT of a simple system
with only a single level of cache may be calculated as

AMAT = hit time + miss rate x miss penalty

This formula can be extended to more complicated memory hierarchies by
replacing miss penalty with the AMAT for the next level in the memory hierarchy.
That is

AMATi = hit timei + miss ratei x AMATi+1

where i refers to the level of the memory hierarchy.

1.Suppose you have a system with the following properties:
• L1$ hits in 1 cycle (local hit rate 75%)
• L2$ hits in 20 cycles (local hit rate 80%)
• L3$ hits in 100 cycles (local hit rate 90%)
• Main memory hits in 1000 cycles (always hits)

Calculate the AMAT.

2.Suppose you have a system with the following properties:
• L1$ hits in 1 cycle (local miss rate 25%)
• L2$ hits in 10 cycles (local miss rate 40%)
• L3$ hits in 50 cycles (global miss rate 6%)
• Main memory hits in 100 cycles (always hits)

Calculate the AMAT.

