
MOESI Cache Coherency

state Cache up Memory up Others have Can respond to Can write without
to date? to date? a copy? other’s reads? changing state?

Modified Yes No No Yes, Required Yes
Owned Yes Maybe Maybe Yes, Optional No

Exclusive Yes Yes No Yes, Optional No
Shared Yes Maybe Maybe No No
Invalid No Maybe Maybe No No
With the MOESI concurrency protocol implemented, accesses to cache accesses appear serializiable. This

means that the result of the parallel cache accesses appear the same as if there were done in serial from one
processor in some ordering.

1. Consider the following access pattern on a two-processor system with a direct-mapped, write-back cache
with one cache block and a two cache block memory. Assume the MOESI protocol is used, with write-
back caches, write-allocate, and invalidation of other caches on write (instead of updating the value in
the other caches).

Memory @ 0 Memory @ 1
Time After Operation P1 cache state P2 cache state up to date? up to date?

0 P1: read block 1 Exclusive (1) Invalid YES YES
1 P2: read block 1 Owned (1) Shared (1) YES YES
2 P1: write block 1 Modified (1) Invalid YES NO
3 P2: write block 1 Invalid Modified (1) YES NO
4 P1: read block 0 Exclusive (0) Modified (1) YES NO
5 P2: read block 0 Owned (0) Shared (0) YES YES
6 P1: write block 0 Modified (0) Invalid NO YES
7 P2: read block 0 Owned (0) Shared (0) NO YES
8 P2: write block 0 Invalid Modified (0) NO YES
9 P1: read block 0 Shared (0) Owned (0) NO YES

2. Consider if we run the following two loops in parallel (as two threads on two processors).

for(int i = 0; i < N; i += 2) array[i] += 1;

for(int j = 1; j < N; j += 2) array[j] += 2;

would we expect more, less, or the same number of cache misses than if we were to run this serially
(assume each processor has its own cache and all data is invalid to start with)?

Solution: Possibly. More since both are modifying the same cache blocks causing invalidation of
each other’s blocks

CS 61C Spring 2013 Discussion 10 - Cache Coherency Week 9

Concurrency

1. Consider the following function:

void transferFunds(struct account *from,

struct account *to,

long cents) {

from->cents -= cents;

to->cents += cents;

}

(a) What are some data races that could occur if this function is called simultaneously from two (or
more) threads on the same accounts? (Hint: if the problem isn’t obvious, translate the function
into MIPS first)

Solution: Each thread needs to read the “current” value, perform and add/sub and store a
value for from->cents and to->cents. Two threads could read the same “current” value and
the later store essentially erases the other transaction.

(b) How could you fix or avoid these races? Can you do this without hardware support?

Solution: Could fix by adding a lock to each struct account. Without hardware support there
would still be a data race to read the lock = 0 and have multiple threads that think they have
the lock. Adding hardware support to implement atomic read/write memory operations fixes
this problem.

2. A reader-writer lock is a lock which can either be obtained exclusively by one thread (a “write lock”)
or shared by an arbitrary number of threads (who shore a “read lock”). Consider implementing a
reader-writer lock by choosing the following values for the lock (which will be one MIPS word):

• 0: Unlocked

• Positive number: read-locked; lock value is number of readers

• -1: write-locked

Write MIPS assembly implementation of write lock, write unlock, read lock, and read unlock. When
the lock cannot be obtained, have your functions loop until it becomes free.

Solution:

write_lock: ll $t0, 0($s0)

bne $t0, $0, write_lock

addi $t0, $0, -1

sc $t0, 0($s0)

beq $t0, $0, write_lock

write_unlock: sw $0, 0($s0)

read_lock: ll $t0, 0($s0)

slt $t1, $t0, $0

bne $t1, $0, read_lock

CS 61C Spring 2013 Discussion 10 - Cache Coherency Week 9

addi $t0, $t0, 1

sc $t0, 0($s0)

beq $t0, $0, read_lock

read_unlock: ll $t0, 0($s0)

addi $t0, $t0, -1

sc $t0, 0($s0)

beq $t0, $0, read_unlock

Summary of general speed-up techniques

• Data-Level parallelism / SIMD: compute multiple results at a time

• Thread-level parallelism / OpenMP: have multiple threads doing computations at a time

• I/D Cache locality (e.g. loop ordering, etc.): Maximize cache hits for higher speed

• Loop unrolling: minimizes for loop overheads

• Cache Blocking: increase cache usage for higher performance

• Code optimization (mostly compiler’s job): interweave independent instructions to avoid CPU stalls
(waiting for the results from the previous instruction)

CS 61C Spring 2013 Discussion 10 - Cache Coherency Week 9

