
CS 61C Spring 2013 Discussion 10 – Single Cycle Datapath & Ctrl [SOLN]
__

CPU Design
Here is the basic datapath as discussed in lecture, shown in simplified format.

rd, rs, and rt are 5 bit wires, imm is a 16 bit wire. All other wires are 32 bits wide.

Register Transfer Language(RTL)

• Use to describe flow of data: dest � src
• Each line happens in parallel (at the same time): b � c, a � b
• In MIPS, use R[x] for register x, and Mem[y] for memory at y. Similar to array syntax.

Exercises

For the following exercises, assume that the ALU can output an equals signal, which is
on when its two inputs are equal.

1. Label the unlabelled wires in the diagram above, describing what data is on each line. For

example, one of the outputs of the registers block could be R[rs].

CS 61C Spring 2013 Discussion 10 – Single Cycle Datapath & Ctrl [SOLN]
__

2. Add control signals and missing elements (such as multiplexers) to the diagram below so
that the datapath can execute the following instructions: add, lui, sw, bne, j.

3. Fill out the values for the control signals from question 2 (Write the names of your control

signals in the second row):
Instrs. Control Signals

 nPC_sel RegDst RegWr ALUSrc ALUctr MemtoReg MemWr ExtOp
add PC+4 rd 1 rt add 0 0 X
lui PC+4 rt 1 imm shiftx16 0 0 Zero*
sw PC+4 X 0 imm add X 1 Sign
bne branch X 0 rt X X 0 Sign**

j jump X 0 X X X 0 X
*Doesn’t really matter since ALUctr is shiftx16
**Branch also multiplies immediate by 4 at some point
4. Suppose you wanted to add a new instruction, beqr, which will be used like this:

beqr $x, $y, $z will branch to the address in $z if $x and $y are equal, otherwise continue to
the next instruction. Show any changes that would need to be made to the datapath above
to make this instruction work.

The diagram is already crowded, so I will explain the changes. Since we’re reading
three registers at once here, we need to add a third read port to the register file, and
correspondingly, a third read address port. We can reuse beq’s datapath to compare
two registers, rs and rt, so rd would contain the address to jump to. We would then
connect R[rd] to the “address logic” module (which is essentially a mux).

