
Discussion	13:	VM	(cont),	I/O	
	
1. Consider	a	call	to	the	following	MIPS	code	(no	delay	slots)	with	the	given	initial	

page	table.	Assume	that	pages	are	4KiB	and	that	all	page	faults	(but	not	
protection	faults)	can	be	serviced	by	the	OS	without	evicting	pages.	$sp	is	
initially	0x6004,	$ra	is	initially	0x1040,	and	$a0	is	initially	0x1.	
	

MIPS	 	 Initial	Page	Table	
V.A.	 Instructions	 Valid	 Dirty	 A.R.	 P.P.N.	
0x2004	 Foo:	addiu	$sp,	$sp,	‐4	 0	 0	 None	 4	
0x2008	 sw	$ra,	0($sp)	 1	 0	 Read,	Exec	 5	
0x200C	 beq	$a0,	$zero,	Skip	 0	 0	 Read,	Exec	 1	
0x2010	 addiu	$a0,	$a0,	‐1	 0	 0	 None	 1	
0x2014	 jal	Foo	 0	 0	 Read,	Write	 12	
0x2018	 Skip:	lw	$ra,	0($sp)	 1	 0	 Read,	Write	 3	
0x201C	 addiu	$sp,	$sp,	4	 1	 0	 Read,	Write	 2	
0x2020	 jr	$ra	 …	 …	 …	 …	

	
a. Where	will	page	faults	occur	in	the	execution	of	this	function?	

	
On	the	first	instruction	executed.	Since	0x2004	corresponds	to	virtual	page	2,	
which	is	not	valid,	a	page	fault	will	be	triggered	as	a	result	of	the	instruction	fetch.	
No	other	page	faults	will	occur.	
	

b. Assuming	that	we	don’t	have	a	TLB,	(or	that	all	the	TLB	was	flushed),	what	will	be	
in	the	page	table	after	this	function	is	completely	executed?	
	

Final	Page	Table	
Valid	 Dirty	 A.R.	 P.P.N.
0	 0	 None	 4	
1	 0	 Read,	Exec	 5	
1	 0	 Read,	Exec	 ##	
0	 0	 None	 1	
0	 0	 Read,	Write	 12	
1	 1	 Read,	Write	 3	
1	 1	 Read,	Write	 2	
…	 …	 …	 …	

	
c. Suppose	$a0	were	initially	0xC00	instead	of	0x1,	what	other	exceptions	can	occur?	

	
Deep	into	the	recursion	$sp	would	end	up	being	0x4FFC	when	executing	the	
instruction	at	0x2008,	which	would	cause	a	page	fault	for	virtual	page	4.	Later,	
$sp	would	be	0x3FFC,	which	would	cause	a	protection	fault	for	virtual	page	3.	
	 	

2. Fill	this	table	of	polling	and	interrupts.	
Operation	 Definition	 Pro/Good	for	 Con	
Polling	 Forces	the	hardware	to	

wait	on	ready	bit	
(alternatively,	if	timing	
of	device	is	known	–	
the	ready	bit	can	be	
polled	at	the	frequency	
of	the	device).	It	
basically	means	
manually	checking	the	
ready	bit	regularly.	

PRO:
‐easy	to	write	
‐poll	handler	does	not	
have	excessively	high	
overhead	
‐deterministic	
‐doesn’t	require	
additional	hardware	
Good	for:	
‐Mouse,	keyboard		

Infeasible	on	hardware	
with	fast	transfer	rates	
that	is	actually	rarely	
ready	(e.g.	Ethernet	
card	receiver)	

Interrupts	 Hardware	fires	an	
“exception”	when	it	
becomes	ready.	CPU	
changes	$PC	to	execute	
code	in	the	interrupt	
handler	when	this	
occurs.	

PRO:
‐Necessary	for	fast	
devices	that	are	rarely	
ready.	
Good	for:	
Fast	devices	‐	
Hard	drives,		
Network	cards	

‐nondeterministic	
when	interrupt	occurs		
‐interrupt	handler	has	
some	overhead	(saves	
all	registers),	meaning	
polling	can	actually	be	
faster	for	slow,	often	
ready	devices	such	as	
mice

	
3. Memory	Mapped	I/O	

Certain	memory	addresses	correspond	to	registers	in	I/O	devices	and	not	
normal	memory.	
0xFFFF0000	–	Receiver	Control:		
Lowest	two	bits	are	interrupt	enable	bit	and	ready	bit.	
0xFFFF0004	–	Receiver	Data:	
Received	data	stored	at	lowest	byte.	
0xFFFF0008	–	Transmitter	Control	
Lowest	two	bits	are	interrupt	enable	bit	and	ready	bit.	
0xFFFF000C	–	Transmitter	Data	
Transmitted	data	stored	at	lowest	byte.	
	
Write	MIPS	code	to	read	a	byte	from	the	receiver	and	immediately	send	it	to	the	
transmitter.	

	
lui	$t0	0xffff	

receive_wait:	#poll	on	ready	of	receiver	
lw	$t1	0($t0)	
andi	$t1	$t1	1	
beq	$t1	$zero	receive_wait	
lb	$t2	4$t0)	#load	data	

transmit_wait:	#poll	on	ready	of	transmitter	
lw	$t1	8($t0)	
andi	$t1	$t1	1	
beq	$t1	$zero	transmit_wait	
sb	$t2	12($t0)	#write	to	transmitter	

