
CS61c Spring 2014 Discussion 1 – C

1 C Introduction

C is syntactically very similar to Java, but there are a few key differences of which to be wary:

• C is function oriented, not object oriented, so no objects for you.

• C does not automatically handle memory for you.

– In the case of stack memory (things allocated in the “usual” way), a datum is garbage immediately
after the function in which it was defined returns.

– In the case of heap memory (things allocated with malloc and friends), data is freed only when the
programmer explicitly frees it.

– In any case, allocated memory always holds garbage until it is initialized.

• C uses pointers explicitly. *p tells us to use the value that p points to, rather than the value of p, and &x

gives the address of x rather than the value of x.

There are other differences of which you should be aware, but this should be enough for you to get your feet
wet.

2 At Least There Are Comments.

Write the following functions so that they perform according to the provided comment.

1. /* The first function you write in any language.

* Prints the string "Hello World\n" to standard output. */

void hello_world() {

printf("Hello World\n");

}

2. /* Divides and takes the floor of a value exterior to this function by 2^POW.

* Does not use the division function. */

void div(int *y, unsigned int pow) {

*y = y[0] >> pow;

}

3. /* For each bit position i in [0, sizeof(int)*8) calls hello_world i times

* iff the ith bit of the value X points to is set. */

void HI_HI_HI_HI(int *x) {

int i = 0, j = 0, int_bits = sizeof(int) * 8;

for (i = 0; i < int_bits; i++) {

if ((x[0] >> i) & 1)

for (j = 0; j < i; j++)

hello_world();

}

}

1



4. /* Computes and returns the nth fibonacci number, using an iterative approach. */

int fib_iter(unsigned int n) {

int fib0 = 0, fib1 = 1, i, swap;

for (i = 0; i < n; i++) {

swap = fib1;

fib1 += fib0;

fib0 = swap;

}

return fib0;

}

3 Uncommented Code? Yuck!

The following functions work correctly (note, this does not mean intelligently), but have no comments. Docu-
ment the code to prevent it from causing further confusion.

1. /* Returns the sum of the first N elements in ARR. */

int foo(int *arr, size_t n) {

return n ? arr[0] + foo(arr + 1, n - 1) : 0;

}

2. /* Returns -1 times the number of zeroes in the first N elements of ARR. */

int bar(int *arr, size_t n) {

int sum = 0, i;

for (i = n; i > 0; i--) {

sum += !arr[i - 1];

}

return ~sum + 1;

}

3. /* Does nothing. */

void baz(int x, int y) {

x = x ^ y;

y = x ^ y;

x = x ^ y;

}

4 Programming with Pointers

Write the following functions so that they perform according to the provided comment. Not all questions are
guaranteed to be soluble.

1. /* Swaps the value of two ints outside of this function. */

void swap(int *x, int *y) {

int temp = *x;

*x = *y;

*y = temp;

}

2



2. /* Increments the value of an int outside of this function by one. */

void plus_plus(int *x) {

x[0]++;

}

3. /* Returns a buffer for N ints. */

//Insoluble using provided machinery. Can of course be done using malloc.

int* allocate_buffer(unsigned int size) {

return malloc(sizeof(int) * size); //note that this is an unchecked malloc

}

4. /* Returns the number of bytes in a string. Does not use strlen. */

int mystrlen(char* str) {

int count = 0;

while(*str++) {

count++;

}

return count;

}

5. /* Returns the number of elements in an array ARR of ints. */

insoluble

5 Problem?

The following code segments may contain either logic or syntax errors. Find them.

1. /* Returns the sum of all the elements in SUMMANDS. */

int sum(int* summands) { //int sum(int* summands, unsigned int n)

int sum = 0;

for (int i = 0; i < sizeof(summands); i++) //i < n

sum += *(summands + i);

return sum;

}

2. /* Increments all the letters in the string STRING, held in an array of length N.

* Does not modify any other memory which has been previously allocated. */

void increment(char* string, int n) {

for (int i = 0; i < n; i++) //for (i = 0; string[i] != 0; i++)

*(string + i)++; //string[i]++; or (*(string + i))++;

//consider the corner case of incrementing 0xff

}

3. /* Copies the string SRC to DST. */

void copy(char* src, char* dst) {

while (*dst++ = *src++);

}

3


