
MIPS Control Flow
1. What are the instructions to branch on each of the following conditions?

	
2. Translate the following C code into MIPS.

// Strcpy:

// $s1 -> char s1[] = “Hello!”;

// $s2 -> char *s2 =

// malloc(sizeof(char)*7);

int i=0;

do {

 s2[i] = s1[i];

 i++;

} while(s1[i] != ‘\0’);

s2[i] = ‘\0’;

 addiu $t0, $0, 0

Loop: addu $t1, $s1, $t0 # s1[i]

 addu $t2, $s2, $t0 # s2[i]

 lb $t3, 0($t1) # char is

 sb $t3, 0($t2) # 1 byte!

 addiu $t0, $t0, 1

 addiu $t1, $t1, 1

 lb $t4, 0($t1)

 bne $t4, $0, Loop

Done: addiu $t2, $t2, 1

 sb $t4, 0($t2)

// Nth_Fibonacci(n):

// $s0 -> n, $s1 -> fib

// $t0 -> i, $t1 -> j

int fib = 1, i = 1, j = 1;

if(n==0) return 0;

else if(n==1) return 1;

n-=2;

while(n != 0) {

 fib = i + j;

 j = i;

 i = fib;

 n--;

}

return fib;

 ...

 beq $s0, $0, Ret0

 addiu $t2, $0, 1

 beq $s0, $t2, Ret1

 addiu $s0, $s0, -2

Loop: beq $s0, $0, RetF

 addu $s1, $t0, $t1

 addiu $t0, $t1, 0

 addiu $t1, $s1, 0

 addiu $s0, $s0, -1

 j Loop

Ret0: addiu $v0, $0, 0

 j Done

Ret1: addiu $v0, $0, 1

 j Done

RetF: addu $v0, $0, $s1

 ...

Done: jr $ra

$s0 < $s1
slt $t0, $s0,$s1
bne $t0, $0, foo

$s0 <= $s1
slt $t0, $s1,$s0
beq $t0, $0, foo

$s0 > 1,
addi $t1, $0, 1
slt $t0, $t1,$s0
bne $t0, $0,foo

$s0 >= 1
slti $t0, $s0, 1
beq $t0, $0, foo

Instruction Formats
MIPS instructions come in three tasty flavors!

R-Instruction format (register-to-register) Examples: addu, and, sll, jr
op code rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
See green sheet to see what registers are read from and what is written to

I-Instruction Format (register immediate) Examples: addiu, andi, bne
op code rs rt immediate

6 bits 5 bits 5 bits 16 bits
Note: Immediate is 0 or sign-extended depending on instruction (see green sheet)

J-Instruction Format (jump format) For j and jal
op code jump address

6 bits 26 bits

KEY: An instruction is R-Format if the op code is 0. If the opcode is 2 or 3, it is J-format.
Otherwise, it is I-format. Different R-format instructions are determined by the “funct”.

3. How many total possible instructions can we represent with this format?

We count the number of possible instructions in each format:
R – 64 (op code 0, all the bits of func), I – 61, J – 2, !127 total.

4. What could we do to increase the number of possible instructions?

There are a number of possible solutions, all of which roughly take the form, “borrow bits from
another field and add them to opcode/func.” Examples of this would be sacrificing bits of the I-
format immediate for extra opcode bits. This costs us range in the immediates we can represent
and the range of our branch instructions.

MIPS Addressing Modes

• We have several addressing modes to access memory (immediate not listed):

o Base displacement addressing: Adds an immediate to a register value to
create a memory address (used for lw, lb, sw, sb)

o PC-relative addressing: Uses the PC (actually the current PC plus four)
and adds the I-value of the instruction (multiplied by 4) to create an
address (used by I-format branching instructions like beq, bne)

o Pseudodirect addressing: Uses the upper four bits of the PC and
concatenates a 26-bit value from the instruction (with implicit 00 lowest
bits) to make a 32-bit address (used by J-format instructions)

o Register Addressing: Uses the value in a register as memory (jr)

5. You need to jump to an instruction that 2^28 + 4 bytes higher than the current PC.
How do you do it? (HINT: you need multiple instructions)

The jump instruction can only reach addresses that share the same upper 4 bits as the PC. A jump
2^28+4 bytes away would require changing the fourth highest bit, so a jump instruction is not
sufficient. We must manually load our 32 bit address into a register and use jr.

lui $at {upper 16 bits of Foo}
ori $at $at {lower 16 bits of Foo}
jr $at

6. You now need to branch to an instruction 2^17 + 4 bytes higher than the current PC,
when $t0 equals 0. Assume that we’re not jumping to a new 2^28 byte block. Write
MIPS to do this.

The total range of a branch instruction is -2^17 " (2^17)-4 bytes (a 16 bit signed integer that
counts by words). Thus, we cannot use a branch instruction to reach our goal, but by the
problem’s assumption, we can use a jump. Assuming we’re jumping to label Foo:

beq $t0 $0 DoJump
[…]
DoJump: j Foo

7. Given the following MIPS code (and instruction addresses), fill in the blank fields
for the following instructions (you’ll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $t0 | 0 | 8 | 8 | 8 | 0 | 0x21 |

0x002cff04: jal foo | 3 | 0xc0001 |

0x002cff08: bne $t0, $zero, loop | 5 | 8 | -3 = 0xfffd |

...

0x00300004: foo: jr $ra $ra=__0x002cff08___

8. What instruction is 0x00008A03?

Hex -> bin: 0000 0000 0000 0000 1000 1010 0000 0011

0 opcode -> R-type: 000000 00000 00000 10001 01000 000011

 sra $s1 $0 8

