
CS 61C Spring 2014 Discussion 5 – Direct Mapped Caches

In the following diagram, each block represents 8 bits (1 byte) of data. Our memory is byte-addressed,
meaning that there is one address for each byte. Compare this to word-addressed, which means that
there is one address for each word.

The Geometry of Caches

Main
Memory

...

6

5

4

3

2

1

0

Cache
Number

Main
Memory

0
3 2 1 0

7 6 5 4

1
11 10 9 8

15 14 13 12

2
19 18 17 16

23 22 21 20

3
27 26 25 24

31 30 29 28

CPU
Cache

Index
Number

Offset

3 2 1 0

0

1

Tag bits Index bits Offset bits Total

29 1 2 32

1word=4 bytes=32bits
Index bits=log2(Number of index rows)

Offset bits=log2(Number of offsets columns)

1. Direct mapped caches
1. How many bytes of data can our cache hold? 8 bytes How many words? 2 words
2. Fill in the “Tag bits, Index bits, Offset bits” with the correct T:I:O breakdown according to the

diagram.
3. Let’s say we have a 8192KiB cache with an 128B block size, what is the tag, index, and offset

of 0xFEEDF00D?

FE ED F0 0D

1111 1110 1110 1101 1111 0000 0000 1101

Tag: 1 1111 1101 (0x1FD) Index: 1101 1011 1110 0000 (0xDBE0) Offset: 000 1101 (0x0D)
4. Fill in the table below. Assume we have a write-through cache, so the number of bits per row

includes only the cache data, the tag, and the valid bit.

Address size
(bits) Cache size Block size Tag bits Index bits Offset bits Bits per row

16 4KiB 4B 4 10 2 37

32 32KiB 16B 17 11 4 146

32 64KiB 16B 16 12 4 145

64 2048KiB 128B 43 14 7 1068

2. Cache hits and misses
Assume we have the following cache. Classify each of the following byte memory accesses as a cache
hit (H), cache miss (M), or cache miss with replacement (R).

CPU
Cache

Index
Number

Offset

7 6 5 4 3 2 1 0

0

1

2

3

1. 0x00000004 M
2. 0x00000005 H
3. 0x00000068 M
4. 0x000000C8 R
5. 0x000000DD M
6. 0x00000045 R
7. 0x00000004 R
8. 0x000000C8 H

Self check: Of the 32 bits in each address, which bits do we use to find the row of the cache to use?
We use these bits: 0b…0000 0000 0100

3. Analyzing C Code
#define NUM_INTS 8192
int A[NUM_INTS]; /** A lives at 0x100000 */
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) { A[i] = i; } /** Line 1 */
for (i = 0; i < NUM_INTS; i += 128) { total += A[i]; } /** Line 2 */

Let’s say you have a byte-addressed computer with a total address space of 1MiB. It features a 16KiB
CPU cache with 1KiB blocks.

1. How many bits make up a memory address on this computer? 20
2. What is the T:I:O breakdown? 6 tag bits 4 index bits 10 offset bits
3. Calculate the cache hit rate for the line marked Line 1:

50%. The integers are 4×128 = 512 bytes apart, which means that there are two accesses per
block. The first access is a cache miss, but the second access is a cache hit, because A[i] and A[i
+ 128] are in the same cache block.

4. Calculate the cache hit rate for the line marked Line 2:
50%. At the end of line 1, we now have the second half of A inside our cache, so we get the

same hit rate as before. Note that we do not have to consider cache hits for total, since the
compiler will probably leave it in a register.

4. Average Memory Access Time
AMAT is the average (expected) time it takes for memory access. It can be calculated using this
formula:

AMAT=hit time+miss rate×miss penalty

Remember that the miss penalty is the additional time it takes for memory access in the event of a
cache miss. Therefore, a cache miss takes hit time+miss penalty time.

1. Suppose that you have a cache system with the following properties. What is the AMAT?
a) L1$ hits in 1 cycle (local miss rate 25%)
b) L2$ hits in 10 cycles (local miss rate 40%)
c) L3$ hits in 50 cycles (global miss rate 6%)
d) Main memory hits in 100 cycles (always hits)
The AMAT is 1 + 25%×(10 + 40%×(50)) + 6%×(100) = 14.5 cycles.
Alternatively, you could have calculated the following global hit rates for each of the caches:

• 75% L1$

• 15% L2$

• 4% L3$

• 6% Main Memory

And the following hit times:
• 1 cycle L1$

• 11 cycles L2$

• 61 cycles L3$

• 161 cycles Main Memory

Then compute:
AMAT = 75%×1 + 15%×11 + 4%×61 + 6%×161 = 14.5 cycles.

	1. Direct mapped caches
	2. Cache hits and misses
	3. Analyzing C Code
	4. Average Memory Access Time

