
CS61c Spring 2014 Discussion 8 – Cache Coherency

MOESI Cache Coherency

With the MOESI concurrency protocol implemented, accesses to cache accesses appear serializiable. This
means that the result of the parallel cache accesses appear the same as if there were done in serial from one
processor in some ordering.

1. Consider the following access pattern on a two-processor system with a direct-mapped, write-back
cache with one cache block and a two cache block memory. Assume the MOESI protocol is used, with
write- back caches, write-allocate, and invalidation of other caches on write (instead of updating the
value in the other caches).

Time After Operation P1 cache state P2 cache state Memory @ 0 up to date? Memory @ 1 up to date?
0 P1: read block 1 Exclusive (1) Invalid YES YES
1 P2: read block 1 Owned (1) Shared (1) YES YES
2 P1: write block 1 Modified (1) Invalid YES NO
3 P2: write block 1 Invalid Modified (1) YES NO
4 P1: read block 0 Exclusive (0) Modified (1) YES NO
5 P2: read block 0 Owned (0) Shared (0) YES YES
6 P1: write block 0 Modified (0) Invalid NO YES
7 P2: read block 0 Owned (0) Shared (0) NO YES
8 P2: write block 0 Invalid Modified (0) NO YES
9 P1: read block 0 Shared (0) Owned (0) NO YES

2. Consider if we run the following two loops in parallel (as two threads on two processors).

 for(int i = 0; i < N; i += 2) array[i] += 1;
 for(int j = 1; j < N; j += 2) array[j] += 2;

Would we expect more, less, or the same number of cache misses than if we were to run this serially
(assume each processor has its own cache and all data is invalid to start with)?

Possibly more since both are modifying the same cache blocks causing invalidation of each other’s blocks.

State Cache up to
date?

Memory up
to date?

Others have a
copy?

Can respond to
other’s reads?

Can write without
changing state?

Modified Yes No No Yes, Required Yes
Owned Yes Maybe Maybe Yes, Optional No

Exclusive Yes Yes No Yes, Optional No
Shared Yes Maybe Maybe No No
Invalid No Maybe Maybe No No

Concurrency

3. Consider the following function:

 void transferFunds(struct account *from,
 struct account *to,
 long cents) {
 from->cents -= cents;
 to->cents += cents;
}

(a) What are some data races that could occur if this function is called simultaneously from two (or more)
threads on the same accounts? (Hint: if the problem isn’t obvious, translate the function into MIPS first)

Each thread needs to read the “current” value, perform an add/sub, and store a value for from- >cents
and to->cents. Two threads could read the same “current” value and the later store essentially erases the
other transaction at either line.

(b) How could you fix or avoid these races? Can you do this without hardware support?

Wrap transferFunds in a critical section, or divide up the accounts array and for loop in a way that you can
have separate threads work on different accounts

	

	

	

	

	

	

	

	

Summary of General Speed-up Techniques

• Data-level parallelism / SIMD: compute multiple results at a time.
• Thread-level parallelism / OpenMP: have multiple threads doing computations at a

time
• I/D cache locality (e.g. loop ordering): maximize cache hits for higher speed.
• Loop unrolling: minimize for loop overheads.
• Cache blocking: increase cache usage for higher performance.
• Code optimization (mostly compiler’s job): interweave independent instructions to

avoid CPU stalls (waiting for the results from the previous instruction).

	

