
CS61C Spring 2014 Discussion 12 – Virtual Memory

Virtual Memory Overview

1. Virtual address (VA): What your program uses

Virtual Page Number Page Offset

2. Physical address (PA): What actually determines where in 
memory to go

Physical Page Number Page Offset

With 4 KiB pages and byte addresses, 2^(page offset bits) = 4096, so page offset 
bits = 12.

The Big Picture: Logical Flow
Translate VA to PA using the TLB and Page
Table. Then use PA to access memory as the
program intended.

3. Pages
A chunk of memory or disk with a set size.
Addresses in the same virtual page get
mapped to addresses in the same physical
page. The page table determines the mapping.

4. The Page Table

Index = Virtual Page 
Number
(not stored)

Page
Valid

Page 
Dirty

Permission 
Bits
(read, 
write, ...)

Physical Page Number

0

1

2

…

(Max virtual page 
number)

Each stored row of the page table is called a page table entry (the grayed section is the 
first page table entry). The page table is stored in memory; the OS sets a register telling the 
hardware the address of the first entry of the page table. The processor updates the “page 
dirty” in the page table: “page dirty” bits are used by the OS to know whether updating a 
page on disk is necessary. Each process gets its own page table.

 Protection Fault--The page table entry for a virtual page has permission bits that 
prohibit the requested operation

 Page Fault--The page table entry for a virtual page has its valid bit set to false. The 
entry is not in memory.



CS61C Spring 2014 Discussion 12 – Virtual Memory

The Translation Lookaside Buffer (TLB)

A cache for the page table. Each block is a single page table entry. If an entry
is not in the TLB, it’s a TLB miss. Assuming fully associative: 

TLB 
Entry 
Valid

Tag = Virtual Page 
Number

Page Table Entry

Page 
Dirty

Permission 
Bits

Physical Page 
Number

… … … … …

The Big Picture Revisited

Exercises

1) What are three specific benefits of using virtual memory?

2) What should happen to the TLB when a new value is loaded into the page 
table address register?

3) x86 has an "accessed" bit in each page table entry, which is like the dirty 
bit but set whenever a page is used (load or store). Why is this helpful when 
using memory as a cache for disk?

4) Fill this table out!
Virtual

Address
Bits

Physical
Address

Bits

Page Size VPN Bits PPN Bits Bits per row of
PT (4 extra

bits)
32 32 16KB
32 26 13

32 21 21



CS61C Spring 2014 Discussion 12 – Virtual Memory

32KB 25 25
64 48 28

5) A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative TLB with 
LRU replacement (the LRU field is 3 bits and encodes the order in which pages were accessed, 0
being the most recent). At some time instant, the TLB for the current process is the initial state 
given in the table below. Assume that all current page table entries are in the initial TLB. Assume
also that all pages can be read from and written to. Fill in the final state of the TLB according to 
the access pattern below.

Free physical pages: 0x17, 0x18, 0x19
Access pattern:
Read 0x11f0
Write 0x1301
Write 0x20ae
Write 0x2332
Read 0x20ff
Write 0x3415

Initial
VPN PPN Valid Dirty LRU

0x01 0x11 1 1 0

0x00 0x00 0 0 7

0x10 0x13 1 1 1

0x20 0x12 1 0 5

0x00 0x00 0 0 7

0x11 0x14 1 0 4

0xac 0x15 1 1 2

0xff 0x16 1 0 3

Final
VPN PPN Valid Dirty LRU


	1. Virtual address (VA): What your program uses
	2. Physical address (PA): What actually determines where in memory to go
	3. Pages
	4. The Page Table

