CS 61C: Great Ideas in Computer Architecture (Machine Structures)

Lecture 24
More I/O: DMA, Disks, Networking

Instructors: Krste Asanovic & Vladimir Stojanovic

Guest Lecturer: Sagar Karandikar

http://inst.eecs.berkeley.edu/~cs61c/

http://research.microsoft.com/apps/pubs/default.aspx?id=212001

CS61C / CS150 in the News

Microsoft "Catapult", ISCA 2014

FPGAs are "programmable" hardware used by computer architects and digital circuit designers, lie somewhere between CPUs and custom chips (ASICs).

"Microsoft published a paper at ISCA about using FPGAs in datacenters

for page ranking processing for Bing. In a test deployment, MS reported up to 95% more throughput for only 10% more power. The added TCO was less than 30%. Microsoft used Altera Stratix V FPGAs in a PCIe form-factor with 8GB of DDR3 RAM on each board. The FPGAs were connected using a 10Gb SAS network." - AnandTech

Hardware Acceleration of Key-Value Stores

- Datacenter apps, path through CPU/kernel/app ≈ 86% of request latency
- Goal: Serve popular Key-Value
 Store GET requests without CPU
- Soft-managed cache attached to NIC, RoCC CPU interface
- Benchmarking on FPGA:
 - -RISC-V Rocket @ 50 MHz
 - -NIC from TEMAC/PCS-PMA + 1 Gb SFP
 - –Hardware KV-Store Accelerator
 - -Traffic Manager, DMA Engine
- Written in Chisel

Base System: First Physical RISC-V System with Networking Support

Sagar Karandikar
Howard Mao
Albert Ou
Yunsup Lee
Krste Asanovic

Hardware Acceleration of Key-Value Stores

-Traffic Manager, DMA Engine

Written in Chisel

Yunsup Lee Krste Asanovic

Review: I/O

- Programmed I/O:
 - CPU execs lw/sw instructions for all data movement to/from devices
 - CPU spends time doing 3 things:
 - Getting data from device to main mem.
 - Using data to compute
 - Sending data back to main mem.
- Polling
- Interrupts

Working with real devices

- Programmed I/O: DMA
 - CPU execs lw/sw instructions for all data movement to/from devices
 - CPU spends time doing 3 things:
 - Getting data from device to main mem.
 - Using data to compute
 - Sending data back to main mem.
- Polling
- Interrupts

Agenda

- Direct Memory Access (DMA)
- Disks
- Networking

What's wrong with Programmed I/O?

- CPU has sole control over main memory
- Not ideal since...
 - CPU has to execute all transfers, could be doing other work
 - Device speeds don't align well with CPU speeds
 - Energy cost of using beefy general-purpose CPU where simpler hardware would suffice

Direct Memory Access (DMA)

- Allows other devices to directly read/write from main memory
- New Hardware: the DMA Engine
- DMA engine contains registers written by CPU:
 - Memory address to place data
 - # of bytes
 - I/O port #, direction of transfer
 - unit of transfer, amount to transfer per burst

PIO vs. DMA

System with DMA

DMA: Incoming Data

- Receive interrupt from device
- CPU takes interrupt, begins transfer
 - Instructs DMA engine/device to place data @ certain address
- Device/DMA engine handle the transfer
 - CPU is free to execute other things
- Upon completion, Device/DMA engine interrupt the CPU again

DMA: Outgoing Data

- CPU decides to initiate transfer, confirms that external device is ready
- CPU begins transfer
 - Instructs DMA engine/device that data is available
 certain address
- Device/DMA engine handle the transfer
 - CPU is free to execute other things
- Device/DMA engine interrupt the CPU again to signal completion

DMA: Some new problems

- Where in the memory hierarchy do we plug in the DMA engine? Two extremes:
 - Between L1 and CPU:
 - Pro: Free coherency
 - Con: Trash the CPU's working set with transferred data
 - Between Last-level cache and main mem:
 - Pro: Don't mess with caches
 - Con: Need to explicitly manage coherency

DMA: Some new problems

- How do we arbitrate between CPU and DMA Engine/Device access to memory? Three options:
 - Burst Mode
 - Start transfer of data block, CPU cannot access mem in the meantime
 - Cycle Stealing Mode
 - DMA engine transfers a byte, releases control, then repeats - interleaves processor/DMA engine accesses
 - Transparent Mode
 - DMA transfer only occurs when CPU is not using the system bus

Administrivia

- HKN Course Surveys on Tuesday
- Midterm 2 scores up:
 - Regrade request deadline is 23:59:59 on Sunday
 April 26th
- Proj 4-1 due date extended to Wed, April 29
- Proj 4-2 due Sunday, May 3
 - Run your Proj 4-1 code on a ~12 node EC2 cluster
- HW6 (Virtual Memory) due May 3

iClicker: How's Project 4-1 going?

- A) Haven't started yet
- B) I've read the spec/sample code
- C) I've written some code
- D) I'm nearly done
- E) I'm finished

Agenda

- Direct Memory Access (DMA)
- Disks
- Networking

Review - 6 Great Ideas in Computer Architecture

- 1. Layers of Representation/Interpretation
- 2. Moore's Law
- 3. Principle of Locality/Memory Hierarchy
- 4. Parallelism
- 5. Performance Measurement & Improvement
- 6. Dependability via Redundancy

Computer Memory Hierarchy

Magnetic Disk – common I/O device

- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - similar to tape recorder except digital rather than analog data
- A type of non-volatile storage
 - retains its value without applying power to disk.
- Two Types of Magnetic Disk
 - Floppy disks slower, less dense, removable.
 - Hard Disk Drives (HDD) faster, more dense, non-removable.
- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive storage for files
 - "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Photo of Disk Head, Arm, Actuator

Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)
- Actuator moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>), wait for <u>sector</u> rotate under <u>head</u>, then read or write

Hard Drives are Sealed. Why?

- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in^2
 - ~900 Gbit/in^2 is state of the art
 - Started out at 2 Kbit/in^2
 - ~450,000,000x improvement in ~60 years
- Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around
 5-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.

Disk Device Performance (1/2)

- Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time = time to position the head assembly at the proper cylinder
 - Rotation Time = time for the disk to rotate to the point where the first sectors of the block to access reach the head
 - Transfer Time = time taken by the sectors of the block and any gaps between them to rotate past the head

Disk Device Performance (2/2)

- Average values to plug into the formula:
- Rotation Time: Average distance of sector from head?
 - -1/2 time of a rotation
 - 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - 1 revolution = $1/120 \text{ sec} \Rightarrow 8.33 \text{ milliseconds}$
 - 1/2 rotation (revolution) ⇒ 4.17 ms
- Seek time: Average no. tracks to move arm?
 - Number of tracks/3 (see CS186 for the math)
 - Then, Seek time = number of tracks moved * time to move across one track

But wait!

- Performance estimates are different in practice
- Lots of "magic" going on behind the scenes in disks. One example:
 - Many disks have on-disk caches, which are completely hidden from the outside world
 - Previous formula completely replaced with ondisk cache access time

Where does Flash memory come in?

- ~5-10 years ago: Microdrives and Flash memory (e.g., CompactFlash) went head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power
 (no moving parts, need to spin μdrives up/down)
 - Disk cost = fixed cost of motor + arm mechanics, but actual magnetic media cost very low
 - Flash cost = most cost/bit of flash chips
 - Over time, cost/bit of flash came down, became cost competitive

What does Apple put in its iPods?

Toshiba flash 2 GB

Samsung flash Toshiba 1.8-inch HDD 80, 120, 160 GB

Toshiba flash 32, 64 GB

shuffle

classic

touch

What does Apple put in its iPods?

Toshiba flash 2 GB

16 GB

Samsung flash Toshiba 1.8-inch HDD Toshiba flash 80, 120, 160 GB

32, 64 GB

shuffle nano

classic

touch

Flash Memory / SSDs

- How does Flash memory work?
 - NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/absence is a 1 or 0
- Requires complex management algorithms to avoid wearing out cells
 - Early SSDs had severe reliability issues due to poorly implemented firmware
 - More in CS162

iClicker Question

- We have the following disk:
 - 15000 Cylinders, 1 ms to cross 1000 Cylinders
 - -15000 RPM = 4 ms per rotation
 - Want to copy 1 MB, transfer rate of 1000 MB/s
 - 1 ms controller processing time
- What is the access time using our model?

Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller Processing Time

A	В	C	D	E
10.5 ms	9 ms	8.5 ms	11.4 ms	12 ms

Clicker Question

We have the following disk:

- 15000 Cylinders, 1 ms to cross 1000 Cylinders
- 15000 RPM = 4 ms per rotation
- Want to copy 1 MB, transfer rate of 1000 MB/s
- 1 ms controller processing time

What is the access time?

```
Seek = # cylinders/3 * time = 15000/3 * 1ms/1000 cylinders = 5ms Rotation = time for ½ rotation = 4ms / 2 = 2ms Transfer = Size / transfer rate = 1MB / (1000 MB/s) = 1ms Controller = 1ms Total = 5 + 2 + 1 + 1 = 9ms
```

Agenda

- Direct Memory Access (DMA)
- Disks
- Networking

Networks: Talking to the Outside World

- Originally sharing I/O devices between computers
 - E.g., printers
- Then communicating between computers
 - E.g., file transfer protocol
- Then communicating between people
 - E.g., e-mail
- Then communicating between networks of computers

35

E.g., file sharing, www, ...

4/24/15

The Internet (1962)

History

- JCR Licklider, as head of ARPA, writes on "intergalactic network"
- 1963 : ASCII becomes first universal computer standard
- 1969: Defense Advanced
 Research Projects Agency
 (DARPA) deploys 4 "nodes" @
 UCLA, SRI, Utah, & UCSB
- 1973 Robert Kahn & Vint Cerf invent <u>TCP</u>, now part of the <u>Internet Protocol Suite</u>

Internet growth rates

– Exponential since start!

www.greatachievements.org/?id=3736

4/24/15 en.wikipedia.org/wiki/Internet_Protocol_Suite

The World Wide Web (1989) * "System of interlinked"

- "System of interlinked hypertext documents on the Internet"
- History
 - 1945: Vannevar Bush describes hypertext system called "memex" in article
 - 1989: Sir Tim Berners-Lee proposes, gets system up '90
 - ~2000 Dot-com entrepreneurs rushed in, 2001 bubble burst
- Wayback Machine
 - Snapshots of web over time
- Today : Access anywhere!

Tim Berners-Lee

World's First web server in 1990

Information Management: A Proposal

Abstract

Shared vs. Switch-Based Networks

- Shared vs. Switched:
 - Shared: 1 at a time (CSMA/CD)
 - Switched: pairs ("point-topoint" connections)
 communicate at same time
- Aggregate bandwidth (BW) in switched network is many times shared:
 - point-to-point faster since no arbitration, simpler interface

What makes networks work?

 links connecting switches and/or routers to each other and to computers or devices

 ability to name the components and to route packets of information - messages - from a source to a destination

 Layering, redundancy, protocols, and encapsulation as means of <u>abstraction</u> (61C big idea)

Software Protocol to Send and Receive

- SW Send steps
 - 1: Application copies data to OS buffer
 - 2: OS calculates checksum, starts timer
 - 3: OS sends data to network interface HW and says start
- SW Receive steps
 - 3: OS copies data from network interface HW to OS buffer
 - 2: OS calculates checksum, if OK, send ACK; if not, <u>delete</u> message (sender resends when timer expires)
 - 1: If OK, OS copies data to user address space, & signals application to continue

Dest Src

Net ID Net ID Len ACK INFO CMD/ Address / Data

Networks are like Ogres

Protocol for Networks of Networks?

What does it take to send packets across the globe?

- Bits on wire
- Packets on wire
- Delivery packets within a single physical network
- Deliver packets across multiple networks
- Ensure the destination received the data
- Do something with the data

Protocol for Networks of Networks?

- Abstraction to cope with complexity of communication
- Networks are like ogres onions
 - Hierarchy of layers:
 - Application (chat client, game, etc.)
 - Transport (TCP, UDP)
 - Network (IP)
 - Data Link Layer (ethernet)
 - Physical Link (copper, wireless, etc.)

Networks are like onions.

They stink?

Yes. No!

Oh, they make you cry.

No!... Layers. Onions have layers. Networks have layers.

Protocol Family Concept

 Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...

...but is implemented via services at the next lower level

 Encapsulation: carry higher level information within lower level "envelope"

Inspiration...

- CEO A writes letter to CEO B
 - Folds letter and hands it to assistant

Deariste m.hn,

Puts letter in envelope with CEO B's full name

Your days are numbered.

- Puts letter in larger envelope
- Puts Parte and street address on FedEx envelope
- Puts package on FedEx delivery truck
- FedEx delivers to other company

The Path of the Letter

"Peers" on each side understand the same things
No one else needs to
Lowest level has most packaging

The Path Through FedEx

Protocol Family Concept

Protocol for Network of Networks

 Transmission Control Protocol/Internet Protocol (TCP/IP)

(TCP :: a Transport Layer)

- This protocol family is the basis of the Internet, a WAN protocol
- IP makes best effort to deliver
 - Packets can be lost, corrupted
- TCP guarantees delivery
- TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN

TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KiB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers

"And in conclusion..."

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- Polling vs. Interrupts
- DMA to avoid wasting CPU time on data transfers
- Disks for persistent storage, replaced by flash
- Networks: computer-to-computer I/O
 - Protocol suites allow networking of heterogeneous components. Abstraction!!!