1. Analyze C Code

```c
#define NUM_INTS 8192
int A[NUM_INTS]; /* A lives at 0x1000 */
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) { A[i] = i; } /* Line 1 */
for (i = 0; i < NUM_INTS; i += 128) { total += A[i]; } /* Line 2 */
```

Let’s say you have a byte-addressed computer with a total memory of 1MiB. It features a 16KiB CPU cache with 1KiB blocks.

1. How many bits make up a memory address on this computer?
2. What is the T:I:O breakdown? tag bits: index bits: offset bits:
3. Calculate the cache hit rate for the line marked Line 1:
4. Calculate the cache hit rate for the line marked Line 2:

2. Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields:

- The sign determines the sign of the number (0 for positive, 1 for negative)
- The exponent is in biased notation with a bias of 127
- The significand is akin to unsigned, but used to store a fraction instead of an integer.

Below table shows the bit breakdown for the single precision (32-bit) representation:

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

There is also a double precision encoding format that uses 64 bits. This behaves the same as the single precision but uses 11 bits for the exponent (and thus a bias of 1023) and 52 bits for the significand.

How a float is interpreted depends on the values in the exponent and significand fields:

For normalized floats:

\[\text{Value} = (-1)^\text{Sign} \times 2^{(\text{Exponent} - \text{Bias})} \times 1.\text{mantissa}_2 \]

For denormalized floats:

\[\text{Value} = (-1)^\text{Sign} \times 2^{(\text{Exponent} - \text{Bias} + 1)} \times 0.\text{mantissa}_2 \]

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Anything</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>Normal</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>Infinity</td>
</tr>
<tr>
<td>255</td>
<td>Nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Exercises

1. How many zeroes can be represented using a float?
2. What is the largest finite positive value that can be stored using a single precision float?
3. What is the smallest positive value that can be stored using a single precision float?

4. What is the smallest positive normalized value that can be stored using a single precision float?

5. Convert the following numbers from binary to decimal or from decimal to binary:
 0x00000000 8.25 0x00000F00 39.5625 0xFF94BEEF ∞

3. **AMAT**
 AMAT is the average (expected) time it takes for memory access. It can be calculated using this formula:
 \[
 \text{AMAT} = \text{hit time} + \text{miss rate} \times \text{miss penalty}
 \]
 Miss rates can be given in terms of either local miss rates or global miss rates. The *local miss rate* of a cache is the percentage of accesses into the particular cache that miss at the cache, while the *global miss rate* is the percentage of all accesses that miss at the cache.

Exercises
Suppose your system consists of:
- A L1$ that hits in 2 cycles and has a local miss rate of 20%
- A L2$ that hits in 15 cycles and has a global miss rate of 5%
- Main memory hits in 100 cycles

1. What is the local miss rate of L2$?

2. What is the AMAT of the system?

3. Suppose we want to reduce the AMAT of the system to 8 or lower by adding in a L3$. If the L3$ has a local miss rate of 30%, what is the largest hit time that the L3$ can have?

4. **Flynn Taxonomy**
 1. Explain SISD and give an example if available.

 2. Explain SIMD and give an example if available.

 3. Explain MISD and give an example if available.

 4. Explain MIMD and give an example if available.