
ˇ

Your Name (first last)

← Name of person on left (or aisle)

UC Berkeley CS61C

Fall 2019 Midterm

TA name

SID

Name of person on right (or aisle) →

Fill in the correct circles & squares completely…like this: ⬤ (select ONE), and ⬛(select ALL that apply)

Quest-clobber question: Q3

When you see SHOW YOUR WORK, that means a correct answer without work will receive
NO CREDIT, and your work needs to show how you were led to the answer you reached. If you find
that there are multiple correct answers to a “select ONE” question, please choose just one of them.

This page has been intentionally left blank

Q1) Float, float on... (7 pts = 2 + 3 + 2)

You notice that floats can generally represent much larger numbers than integers, and decide to make a
modified RISC instruction format in which all immediates for jump instructions are treated as 12-bit floating
point numbers with a mantissa of 7 bits and with a standard exponent bias of 7. Hint: Refer to reference sheet
for the floating point formula if you’ve forgotten it...the same ideas hold even though this is only a 12-bit float…

a) To jump the farthest, you set the float to be
the most positive (not ∞) integer representable.
What are those 12 bits (in hex)?

b) What is the value of
that float (in decimal)?

c) Between 0 and (b)’s answer
(inclusive), how many integers
are not representable?

0x

SHOW YOUR WORK FOR PARTS (a,b,c) HERE

Q2) CALL me maybe? (5 pts)

For each of the following questions, determine what stage of
CALL the following actions can happen. Select ONE per row. Compiler Assembler Linker Loader

a) The imm in jal LABEL gets replaced with its final value. Note
that LABEL lives in a different file than the jal LABEL instruction.

◯ ◯ ◯ ◯

b) Pseudoinstructions are removed ◯ ◯ ◯ ◯

c) Outputs assembly language code ◯ ◯ ◯ ◯

d) The symbol table is read by ◯ ◯ ◯ ◯

e) Copies arguments passed to the program onto the stack ◯ ◯ ◯ ◯

Q3) I thought I needed to do a 2s but it was really just a sign-mag?! (20 pts = 7*2 + 6)

You recover an array of critical 32-bit data from a time capsule and find it was encoded in sign-magnitude!
Write the ConvertTo2sArray function in C that converts all the data to 2s complement. You are told that
0x00000000 was never used to record any actual data, and is the array terminator (just as you do for strings).
ConvertTo2s does the actual conversion for each number. Select ONE per letter; for <h> fill in the blank.

 void ConvertTo2sArray(<a> A) {
 while () {
 if (<c>)
 ConvertTo2s(<d>);
 <e> ;
 }

 }

 void ConvertTo2s(<f> B) {
 <g> = <h> ;
 }

<a> ◯ int32_t ◯ int32_t *
 ◯ true ◯ false ◯ A ◯ *A

<c>

 ◯ A < 0 ◯ *A < 0 ◯ A
 ◯ A > 0 ◯ *A > 0 ◯ *A
 ◯ A <= 0 ◯ *A <= 0 ◯ true
 ◯ A >= 0 ◯ *A >= 0 ◯ false

<d> ◯ &A ◯ A ◯ *A
<e> ◯ A = A + 1 ◯ *A = *A + 1
<f> ◯ int32_t ◯ int32_t *
<g> ◯ &B ◯ B ◯ *B

<h>

SHOW YOUR WORK FOR PART (h) HERE

Q4) !noitseuq V-CSIR taerg a s’ereH (20 pts = 12 + 4 + 4)
a) Below you will find the standard definition for a linked-list node. The recursive C code below reverses a
linked list with at least one node. (For the initial call, the head of the list would be the first parameter, and the
second parameter would be NULL) Your project partner translated this to nice RISC-V 32-bit code which honors
the RISC-V calling conventions. Unfortunately, you spilled boba on it rendering it much of unreadable, and now
you need to reconstruct it. Our solution used every line, but if you need more lines, just write them to the right
of the line they’re supposed to go after and put semicolons between them (like you would do in the C
language). Don’t waste time trying to understand the algorithm for reverse, just compile it line-by-line.

struct node_struct {
 int32_t value;
 struct node_struct *next;
}
typedef struct node_struct Node;

Node *reverse(Node *node, Node *prev) { // Requires: node != NULL
 Node *second = node->next;
 node->next = prev;
 if (second == NULL) { return node; }
 return reverse(second, node); }

reverse:

 lw t0, _______________________ ### Node *second = node->next;

 ______________________________ ### node->next = prev

 beq x0, t0, returnnode ### if (second == NULL) { return node; }

 addi sp, sp, -4

 jal ra reverse ### return reverse(second, node);

returnnode:

Now assume all blanks above contain a single instruction (no more, no less).

b) The address of reverse is 0x12345678.

What is the hex value for the machine code of beq x0, t0, returnnode? 0x___________________

c) The user adds a library and this time the address of reverse is 0x76543210.

What is the hex value for the machine code of beq x0, t0, returnnode? 0x___________________

SHOW YOUR WORK FOR PART (b,c) HERE

Q5) What kind of Algebra do ghosts like? Boooooolean Algebra! (20 pts = 7 + 7 + 6)
Write an FSM that takes in an n-bit binary number (starting with the MSB, ending with the LSB) and performs a
logical right shift by 2 on the input. E.g., if our input is 0b01100, then our FSM should output 0b00011.

Input (MSB → LSB) 0 1 1 0 0

Output 0 0 0 1 1

a) Fill in the following FSM with the correct transitions and outputs. Format state changes as (input / output);
we’ve done two for you. This is the minimum number of states; you may not add any more.

b) Draw the FULLY SIMPLIFIED (fewest number of primitive gates) circuit for the equation below.
You may use the following primitive gates: AND, NAND, OR, NOR, XOR, XNOR, and NOT.

SHOW YOUR WORK FOR PART (b) BELOW
ut (A BB) (B A)(A BC)o = + + + +

c) Assume Input comes from a register, and that there are no hold time violations. What’s the fastest
frequency you can run your clock for this circuit so that it executes correctly? Write your answer as a
mathematical expression (you can also use min(), max(), abs(), and other simple operations if needed) using
these variables: X = XOR delay, N = NOT delay, C = tclk-to-Q, S = tsetup, H = thold

Q6) comp a0, RISC-V, <3 (18 pts = 5*1 + 7*1 + 4 + 2)
You add a new R-Type signed compare instruction
called comp, into the RISC-V single-cycle datapath, to
compare R[rs1] and R[rs2] and set R[rd]
appropriately. The RTL for it is shown on the right.

 comp rd, rs1, rs2

 if R[rs1] > R[rs2]: R[rd] = 1

 elif R[rs1] == R[rs2]: R[rd] = 0

 else: do nothing

a) You want to change the datapath to make this work. You start by adding two more inputs (0x00000000 and
0x00000001) to the rightmost WBSel MUX. What else is required to make this instruction work?
◯ True ◯ False Modify Branch Comp
◯ True ◯ False Modify Imm. Gen.
◯ True ◯ False Modify the ALU and ALUSel control signals
◯ True ◯ False Modify the control logic for RegWEn
◯ True ◯ False Modify the control logic for MemWEn

b) You realize you can also implement this with NO changes to the datapath! From this point until the end of
the page, let’s assume that’s what we’re going to do. Fill in the control signals for it. We did the first one, COMP,
which is a new boolean variable within the control logic that is only set to 1 when we have a comp instruction.

 COMP PCSel BrUn BSel ASel ALUSel MemRW WBSel

comp x1, x2, x3
⬤ 1
 ◯ 0

◯ ALU
◯ PC+4

◯ 1
◯ 0

◯ 1
◯ 0

◯ 1
◯ 0

◯ ADD
◯ SUB
◯ OTHER

◯ Read
◯ Write

◯ PC+4
◯ ALU
◯ MEM

c) The control signal RegWEn can be represented by the Boolean expression “add+addi+sub+...” (where add
is only 1 for add instructions, addi is only 1 for addi instructions, etc.). What new Boolean expression should
we add (i.e., Boolean logic “or”) to the original RegWEn expression to handle the comp instruction? Select ONE.
◯COMP ◯COMP*BrLT ◯COMP*BrEq ◯COMP*!BrLT ◯COMP*!BrEq

◯COMP*(!BrLT+!BrEq) ◯COMP*(BrLT+!BrEq) ◯COMP*(!BrLT+BrEq) ◯COMP*(BrLT+BrEq)

d) Select all of the stages of the datapath this instruction will use. Select all that apply.
▢Instruction fetch (IF) ▢Instruction decode (ID) ▢Execute (EX) ▢Memory (MEM) ▢Writeback (WB)

