Consider two competing 8-bit floating point formats. Each contains the same fields (sign, exponent,
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent,
non-numeric values, etc.), but allocates its bits differently. To save you time, you only need to complete
and circle the (LEFT or RIGHT) blank whose value is closest to zero, that's the only one we'll grade! (I
they're the same value, write the answer in both, & circle both). E.g,. The number represented by oxoo
was 0 for both, so we circled both. But for “exponent bias”, just from the # of z_& bits in each, we Know
ILEFT's bias| < |RIGHT’s bias|, so there’s no need to calculate or write the answer on the RIGHT.

“LEFT" format: | 5] =€ | e || "RIGHT™ format: | 5| EEEEEE | 1 |
scratch space (show all work here) scraich space (show all work here)
Number represented by oxoo: m Number represented by 0x00: m
L L
Exponent Bias: m Exponent Bias: 31 (not graded, so no need to write)
L
a) # Numbers (0<n < 1) # Numbers (0=n < 1)
b) # Mumbers (1=n <2} # Mumbers (1 =n < 2);
c) Difference between two Difference between two
smallest positive values: smallest positive values:
d) Difference between two Difference between two
biggest non-= values: biggest non-= values:
e) Positive Integer closest to 0 Fositive Integer closest to 0
it cannot represent: it cannot represent:

) Which implementation is better for approximating =, LEFT or RIGHT 7 (circle ong)

1) For a 12-bit integer represented with two's complement, what is the:

a) Most positive value (in decimal):

b) Binary representation of that number:

¢) Most negative value (in decimal):

d) Hex representation of that number:

e) In general, for an n-bit, two’s complement integer:
i) What is the most positive you can represent, in decimal?

i) What is the most negative you can represent, in decimal?

2) Fill in the blank below so that the function mod16 will return the remainder of x when divided by 16.
The first blank should be a bitwise operator, and the second blank should be a single decimal
number:

unsigned int modlé(unsigned int x) {

return x #

Connect the definition with the name of the process that describes it.
a) Compiler
b) Assembler
c¢) Linker
d) Loader

1) Outputs code that may still contain pseudoinstructions.

2) Takes bhinaries stored on disk and places them in memory to run.

3) Makes two passes over the code to solve the "forward reference" problem.
4) Creates a symbol table.

5) Combines multiple text and data segments.

6) Generates assembly language code.

7) Generates machine language code.

8) Only allows generation of TAL.

9) Only allows generation of binary machine code.

(b) 2-input NOR gates are said to be complete because any Doolean function can be computed with them. Prove this

)

fact. Hint: implement a subsel of the standard gates (AND, NOT, OR, NOR, NAND, X0, XNORL) using jusl
NOIR gates, then apply a standard boolean algebra Lechnique using these gales.

We wanl Lo implement a very simple Gnile state machine thal delermines ils next stale by the resull of and AND
operation on the current state and the input. The output is always the current state. Assume registers have a CLK
to () delay of bns, a setup time of 2ns, and a hold time of 3ns. To achieve a clock rate of 26MHz, what is the
maximum propogation delay that a NOR gate could have, assuming we are implementing ANT) as a combination of
one or more of the gates built in part (b)?

Complete the state diagram for a finite state machine that outputs 1 if and only if it has just scen the input sequence
101 and it has never seen the input sequence 001, You may add more arrows or more states as you sec fit. Provide
a bricf deseription of cach state.

Example
Input : 1101010100101
Output: 0001010100000

RESET

\\

i1

S0)

—~
Sl
%

_\-"\-\.

'.
\

/ %y

|
LT -

_l— — I—f’—

r rall
: s
'

4 |

T— —_ S

Considering the standard 32-bit RISC-V instruction formats, convert 1w t5, 17(t6) to
machine code:

(a) 0x

Prof. Wawrzynek decides to design a new 1SA for his ternary neural network accelerator.
He only needs to perform 7 different operations with his ISA: XOR, ADD, LD, SW, LI,
ADDI, and BLT. He decides that each instruction should be 17 bits wide, as he likes the
number 17. There are no funct? or functd fields in this new ISA.

(b) What is the minimum number of bits required for the opcode field?

(¢) Suppose Prof. Wawrzynek decides to make the opeode field 6 bits. If we would
like to support instructions with 3 register fields, what is the maximum number of
registers we could address?

Assume we have two arrays input and result. They are initialized as follows:

int *input = malloc(8*sizeof(int));

int *result = calloc{(8, sizeof(int});

for (int i =0; i < 8; i+t) {
input[i] = i;

}

You are given the lollowing RISC-V code. Assume register a0 holds the address of input
and register a2 holds the address of result when MAGIC is called by main.

malin:

Start Calling MAGIC

addi al, x0, 8

jal ra, MAGIC # a0 holds input, a2 holds result
Checkpoint: finished calling MAGIC

exit:
addi a0, x0, 10
add al, x0, 0

ecall # Terminate ecall
MAGIC:
TODD: prologue. What registers need to be stored onto the stack?
mv s0, x0
mv t0, x0
loop:

beq t0, al, done

1w t1, 0(a0)

add s0, 80, t1

s1li t2, ©0, 2

add t2, t2, a2

sw s0, 0(t2)

addi t0, t0, 1

addi a0, a0, 4

jal x0, loop
done:

mv a0, s0

TODO: epilogue. What registers need to be restored?

jr ra

(a) Consider the function MAGIC. The prologue and epilogue for this function are miss-

(b)

ing. Which registers should be saved /restored in MAGIC's prologue/epilogue? Select
all that apply.

O to O al
Ou O a2
2 [

O w O ra
O a0 O x0

Assume you have the prologue and epilogue correctly coded. You sel a breakpoint
at “Checkpoint: finish calling MAGIC” and call main. What does result contain
when your program panses at the breakpoint? Please write the 8 numbers starting
at result in the blanks below.

Translate MAGIC into C code. You may or may not need all of the lines provided
below.

// sizeof(int) ==
int MAGIC(a, i e} |

We wish to introduce a new instruction into our single-cycle datapath. The instruction
SIZ (set if zero) works as follows:

if (R[rs2] == 0):
B[rd] = R[r=1]

Given the single cycle datapath below, select the correct modifications in parts (a) -
(d) such that the datapath executes correctly for this new instruction (and all core
instructions!). You can make the [ollowing assumplions:

e Lhe SIZ signal is 1 if and only il the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

s the immediate generator outputs ZERO when we have a SIZ instruction.

‘m

Lo/ P[] IMEM

Reg[rs2] B

—>

{327 imm, | |immi3r0)

Y 1 Yy
PCSel inst[31.0] ImmSel RegWEn BrUnBrEqBrlT BSel ASel ALUSel MemRW Wasel

(a) Consider the following modifications to the branch comparator inputs. Which con-
figuration will allow this instruction to execute correctly without breaking the ex-
ecution of other instructions in our instruction set?

BrEq By
T el T
O O
BrEq
S BrEq
COMP
prtT Brit
O O

(b) Consider the following modifications to the ALU inputs. Which configuration will
allow this instruction to execute correctly without breaking the execution of other
instructions in our instruction set? Select the configuration that requires minimum
modifications to the original datapath. Notice in the bottom left choice BSel is

unused.

(¢) Consider the following modifications to the WB mux inputs. Which configuration
will allow this instruction to execute correctly without breaking the execution of
other instructions in our instruction set? Select the configuration that requires
minimum modifications to the original datapath.

-'ALu)—" '

E—

O
FC+4 h@
.
Rirsl) W
O

(d) Consider the following modifications to the RegWEn inputs. Which configuration
will allow this instruction to execuie correctly without breaking the execution of
other instructions in our instruction set?

(e) Given your selections above, decide the rest of the control signals for this instruction
based on the diagram given at the beginning of the problem. Select X when a signal’s
value doesn’t matter. You can assume:

e the SIZ signal is | if and only if the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

e the immediate generator outputs ZERQO when we have a SIZ instruction.

1. PCSel:

O1 Qo OoX
2. RegWEn:
O 1 (Enable) O 0 (Disable) O X

3. BrlUn:

O 1 (Signed) O 0 (Unsigned) O X
4. BSel:

Q1 Qo OX
5. ASel:

O1 Qo O X
fi. MemRW:

O 1 (Enable) O 0 (Disable) O X
7. WBSel

O ALUOut O MemOut

O PC+4 O Other: Please specily:

