Consider two competing 8-bit floating point formats. Each contains the same fields (sign, exponent,
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent,
non-numeric values, etc.), but allocates its bits differently. To save you time, you only need to complete
and circle the (LEFT or RIGHT) blank whose value is closest to zero, that's the only one we’ll grade! (If
they’re the same value, write the answer in both, & circle both). E.g,. The number represented by oxoo
was 0 for both, so we circled both. But for “exponent bias”, just from the # of ez._& bits in each, we know

|LEFT's bias| < |RIGHT’s bias|, so there’'s no need to calculate or write the answer on the RIGHT. 70m3
“,f\‘e’\faﬁ\ - Q. ostt s;sh . 9_6- \.M / —b
“LEFT" format: s | EE | s || “RIGHT” format: | s | ==EEEE | M |
scratch space (show all work here!; ‘\’“" b/ scratch space (show all work here)
-t — -3 éﬁhp‘_"\ '
- éj’?-‘—\ b=2 -I \ - ‘-_32 , \ Y :2
[-2z =32 cl-2 =) e,
@l mant exf mant o "\,‘f:’." ron-
oS choices S Choteas 'Q?‘—"?
ex(’ \ .
e ex . .
*‘9.1 —s’tee%)aa 2P =stepsi=g
-2 - =3
22 .7 S=2° 27 2T = Q2
\ :23\ 1—) Q‘SO
2' - 9% = N
Number represented by 0xo00: m Number represented by 0x00: m
N L
Exponent Bias: m Exponent Bias: 31 (not graded, so no need to write)
a) # Numbers (0<n < 1): 232—) # Numbers (0 £n < 1): é(&
CEEg— v
b) # Numbers (1 £n < 2) 3()—- # Numbers (1 £n < 2):
c) Difference between two 2-.-§ Difference between two 3(
smallest positive valtes: smallest positive values:
- — - _ o
d) Difference between two 1 ‘\ Difference between two (2.
biggest non-= values: (biggest non-= values:
_/
e) Positive Integer closest to 0 Positive Integer closest fo 0 5‘
it cannot represent: it cannot represent:

f) Which implementation is better for approximating z2 LEFT) or RIGHT 7 (circle one) r—g.\u

e _—|
=*P 5T 3&9:0\\7—9— .2

=9 =2
st gem=2 ooon

— Cy?f\) mment:Obi) My V) e exPL mant: Q
&Q\‘F"Lmﬁl\‘\" \

KQ'VP 22, Swat oeoes= =~ 2% .\ \
10,9

=6

1) For a 12-bit integer represented with two’s complement, what is the:

e = 2"\ = 20u7

a) Most positive value (in decimal):

b) Binary representation of that number: o\ 0‘90\\\ 1))

‘(Loo e =2 =m20%

O0x8 060

c¢) Most negative value (in decimal):

d) Hex representation of that number:

-\
e) In general, for an n-bit, two’s complement integer: 2‘\ \

i) What is the most positive you can represent, in decimal?
2"

i) What is the most negative you can represent, in decimal?

2) Fill in the blank below so that the function mod16 will return the remainder of x when divided by 16.
The first blank should be a bitwise operator, and the second blank should be a single decimal
number:

unsigned int modl6(unsigned int x) {
é‘ (3™

return X

cek 100 LwO o
Sogs oot | T A&

66*'*0\.-\@/& |IO(6(\0

LooLs
b‘fg;’“\) ' \f" o 2\ 2\ 2°
_{‘\,-PPL.LH-: A w4 ozt OO0 (())
S2eenflim A wf & =5

AQ’ >3,(\)

Connect the definition with the name of the process that describes it.
a) Compiler
b) Assembler
c) Linker
d) Loader

Outputs code that may still contain pseudoinstructions.
Takes binaries stored on disk and places them in memory to run.

Makes two passes over the code to solve the "forward reference" problem.

1)
2)
3)
4) Creates a symbol table.

5) Combines multiple text and data segments.

6) Generates assembly language code.

7) Generates machine language code.

8) Only allows generation of TAL.

9) Only allows generation of binary machine code.

PETEPFTRp

(b) 2-input NOR gates are said to be complete because any Boolean function can be computed with them. Prove this
fact. Hint: implement a subset of the standard gates (AND, NOT, OR, NOR, NAND, XOR, XNOR) using just
NOR gates, then apply a standard boolean algebra Lechnique using these gates,

see neX+ poae Sor devolled S¥eps (b) ¢

(¢) We want to implement a very simple finite state machine that delermines ils next state by the result of and AND
operation on the current state and the input. The output is always the current state. Assume registers have a CLK
to Q delay of 5ns, a setup time of 2ns, and a hold time of 3ns. To achieve a clock rate of 20MHz, what is the
maximum propogation delay that a NOR gate could have, assuming we are implementing AND as a combination of
one or more of the gates built in part (b)?

(d) Complete the state diagram for a finite state machine that outputs 1 if and only if it has just seen the input sequence
101 and it has never seen the input sequence 001. You may add more arrows or more states as you see fit. Provide
a brief description of each state.

Example
Input : 1101010100101
Qutput: 0001010100000

¥ 1
N_)?‘ﬁ RESET """_-_"“-\\\ ’[\':::3’ (’i"‘"

.\: YW o’ﬂ

5
v f’k‘w"
| Seen 1l 7
cif)/ ’\/ 10/ 0[O

,“\&'3'

\1"

(b) e

a2
NAD: BF ¢ AT+ Ag pno r\«m’(o‘w }\{3‘ outk
/",_q’ —— Col oo
e B TR
\ 0

(D NOT)
A’ED""' (‘ [(
® % S o
QJ/\ _C): voT @- 5+%
pot A

Pt &
Ty,
¢ B S AB+Ag +EA

Q)

‘bov‘\ﬁﬂ\ = kb\\ﬂo&‘l’ NOR + NDK "‘ESQMP ng“Z’BNS.’

: Ons &+ 2°(VOR ¢ 2Zny __(/- -2
20— T = 4RO

4ong

-
. 1x\0

25 x0° s~ (23

(s /'

S B e £

g

,—/;'_
295%@ ¢ 25%(0
parala}
mer o(uay
(XN
tontpatn = tarnQ + Lo { Cieny
lneu € — —

lV\N" ‘ON, T Gor
GﬁVu‘ cL O'Al?w,-

(D~ S0 wext PaA? Sov detailed Sterx

Considering the standard 32-bit l{lSC mqtructlon formats, convert 1w t5, 17(t.6) to
machine code: —

01 IELTO L

Prof. Wawrzynck decides to design a new ISA for his ternary neural network accelerator.
He only needs to perform 7 different operations with his ISA: XOR, ADD, LD, SW, LUI,
ADDI, and BLT. He decides that each instruction should be 17 bits wide, as he likes the
number 17. There are no funct? or funct3 fields in this new ISA.

(a) 0x

(b) What is the minimum number of bits required for the opcode field?

3 27 ¢

(¢) Suppose Prof. Wawrzynck decides to make the opcode field 6 bits. If we would
like to support instructions with 3 register fields, what is the maximum number of

registers we could address? lr] 6 = | (/.3 ~

(’Sj.;‘.s‘l"'(rs 3L ihs 3.566

e

(&)

Lw I Load Word R[rd] =
{32'bM[](31),M[R[rs1]+imm](31:0)}
MNEMONIC FMT OPCODE FUNCT3 FUNCT7 OR IMM HEX ADhClMAL

lw | 0000011 010 03/2
CORE INSTRUCTION FORMATS
31 27 26 25 24 20 19 15 14 12 11 7 6 0
R funct7 | s2 rsl funct3 rd Opcode
I imm[11:0] sl funct3 rd Opcode
S imm[11:5] rs2 sl funct3 imm([4:0] opcode
SB imm[12[10:5] rs2 sl funct3 imm[4:1|/11] | opcode
U imm[31:12] rd opcode
uJ imm|20/10:1/11]19:12] rd opcode

w45 (1)
16— s x
'\v\\M':- lr7

Po{: —fs\:)do

T—_ﬁMCl .07 rs 1 \da 3Y = A Prva

oooooOOIOOO(\\\\\olOH“O 00

f\

Assume we have two arrays input and result. They are initialized as follows:
int *input = malloc(8*sizeof (int));
int *result = calloc(8, sizeof(int));

for (imt i = 0, i< 8; i) {
input[i] =
}

You are given She [ollowing RISC-V code=mAzsume register.a0 holds thcﬁ!é!@o[input
F sgiste)lds the address of $ when MAGIC is called by main.
— ——

E>? =S pue>
T — 0= & C Thput

Start Callipg MAGIC Q2= &(re§fué)

addisal, x0, =g
jal ra@ # a0 holds input, a2 holds result
Chec : finished calling MAGIC

exit:
addi a0, x0, 10
add a1, x0, x0

ecall # Terminate ecall
GIC:
TODO: prologug. What registers need to be stored onto the stack?
mv sO, x §o= 0
. mv t0, x0 +0=9 &
oop:
be al, done i$(to= “0 "“m | 1=&
1w t1, 0(a0) 1= |h'uf' Co7 = CishputCiJ =21
add s0, s0, ti So= So++4l = Col=e SO rou €
!!2: J (2) of A
add t2, 12, a2 F2z a2t €2 = az €2zar+¢2
sw s0, 0(t2) t2CoJd=So =yt =0 222l r&uwteT13 = so
addi tO, tO,!:Z +0 = to¢l| tb-f..‘_’ -
addi a0, a0, 4 OO0 =00+ ¢ -
jal x0, lgop =0=a20t¥ Qozaetq
done:
mv a0, s0 e'a“a' s <
TODO: epilogue. What reglst‘leed—w—be’fstgred" h “Qﬁa
jr ra

30 k__;‘—orﬁ_r‘-a,

: 2 = Bttolel
- | T 4enp portes

= (e
(a) Consider the fum:tio@ prologue and epilogue for this function are miss-
GIC

ing. Which registers siiould be saved /restored in MAGIC’s prologue/epilogue? Select
all that apply.

O w O al

0
e 0w agut wetd (::uJ
t2 / (a)
‘ s0 @ L‘ “d

oh
O a0 O x0 o-\'ud' {_m(thoj

(b) Assume you have the prologue and epilogue correctly coded. You set a breakpoint
at “Checkpoint: finish calling MAGIC” and call main. What dom
when your program pauses at the breakpoint? Please write the § numbers starting
at result in the blanks below. !

e | 3y b (¢ 52 1y
> €6 7

(¢) Translate MAGIC into C code. You may or may not need all of the lines provided
below. oo a'l ae
// sizeof(int) == 4 / - y: /
int MAGIC(Wt a, _ int v, iat® o {
it oum = 0, _ levgth

L4 L4

for Cint (=0 , 1< b - [e+428

sum = Sum + alrd,
CL[~‘7= .f“m:s

U

We wish to introduce a new instruction into our single-cycle datapath. The instruction
SIZ (set if zero) works as follows:

if (R[rs2] == 0):
R[rd] = R[rsi]

Given the single cycle datapath below, select the correct modifications in parts (a) -
(d) such that the datapath executes correctly for this new instruction (and all core
instructions!). You can make the following assumptions:

e Lhe SIZ signal is 1 il and only if the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

e the immediate generator outputs ZERO when we have a SIZ instruction.

3-

PEM IMEM

alu

pc+d

imm(31:0]

D
I Yy

PCSel inst[31:0] ImmSel RegWEn BrUnBrEqBrlT BSel ASel ALUSel MemRW

WBSel

(a) Consider the following modifications to the branch comparator inputs. Which con-
figuration will allow this instruction to execute correctly without breaking the ex-
ecution of other instructions in our instruction set?

=

BrlLT

BrEq

BRANCH
COMP

8T BrLT

(b) Consider the following modifications to thputs. Which configuration will
allow this instruction to execute correctly without breaking the exegatman of other
instructions in our instruction set? Select the configuration that requ{res mini
modifications to the original datapath. Notice in the bottom left choice BSel is

unused. RORD t o

12

=1

not miarmyy,

= b uvt

Imm esli'ate
Jedd,

(¢) Consider the following modifications to th WB mux inpu? Which configuration
will allow this instruction to execute correctly without breaking the execution of
other instructions in our instruction set? Select the configuration that requires

~minimum modifications to the original datapath.
; | Al u
] Chofceq wavc

EB—~
%0 bt not

3

0 v ; T_

i min mum
)
N
Rirs1) D m
o = v :
St2 So
(d) Consider the following modifications to the RegWEn inputs. Which configuration
will allow this instruction to execute correctly without breaking the execution of
other instructions in our instruction set?
O O 40 © O
ke

: ntﬂ%]'-':ca
O ‘ireiiiiiiiils FY =t i
fT3= S s12 o,
Ve wour +o write

T vetum reJpe

(e) Given your selections above, decide the rest of the control signals for this instruction
based on the diagram given at the beginning of the problem. Select X when a signal’s
value doesn’t matter. You can assume:

e the SIZ signal is 1 if and only if the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

e the immediate generator outputs ZERO when we have a SIZ instruction.

1. PCSel:

01 90 OXx
2. RegWEn:

O 1 (Enable) @ ((Disable) OX
3. BrUn:

BTra)
O 1 (Signed) O 0 (Unsigned) @ X ==
4. BSel:

—

O1 0o ®X
5. ASel:

QI (OX1] O X
6. MemRW:

O 1 (Enable) © 0 (Disable) Ox
7. WBSel

® ALUOut 2lrs |J O MemOut

O PC+4 O Other: Please specily:

