Consider two competing 8-bit floating point formats. Each contains the same fields (sign, exponent,
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent,
non-numeric values, etc.), but allocates its bits differently. To save you time, you only need to complete
and circle the (LEFT or RIGHT) blank whose value is closest to zero, that's the only one we’ll grade! (If
they’re the same value, write the answer in both, & circle both). E.g,. The number represented by oxoo
was 0 for both, so we circled both. But for “exponent bias”, just from the # of ez & bits in each, we know
ILEFT’s bias| < |RIGHT’s bias|, so there's no need to calculate or write the answer on the RIGHT.

“LEFT" format: [s] EE | MMMMM] “RIGHT” format: | S | EEEEEE [M]
scratch Space {ShOW all work here) scrafch space (show all work here)
EE=00 9 denorm, O.MMMMM % 2" (3% — E..E=000000>denorm, 0.M * 2733 — g M % 2~

0.MMMMMEE=01 = 1.MMMMM *x 2%°%%%0 *E.E=0000019 1.F % 230 = 3 M = 2% =1
1.MMMMMEE=10 = 1.MMMMM x 2°°% 1.0%*2° > M=0,E.E-31=0 = E..E=31SE.EM =
1M.MMMMEE=11 < Inf, NaNs 00111110, = 62,,E.E=111110" 1.M & 23155 -
1.M *» 2E.E=111111< Inf, NalNs

Number represented by oxo00: m
Number represented by 0xo00: m L -
A
Exponent Bias: 31 (not graded, so no need to write)
Exponent Bias: m -
T#

Numbers (0 = n < 1):
Numbers (0 £ n < 1): (2)#

32# NUmbers | Nymbers (1< n < 2):

(1=n<2)
Difference between two (2)
c) Difference between two ¥ smallest positive values:
smallest positive values:
Difference between two ~
d) Difference between two §379 blggest non-c values:
biggest non-= values:
Positive Integer closest to 0 5
e) Positive Integer closest to 0 (4) it cannot represent:

it cannot represent:

f) Which implementation is better for approximating =, (LEFT) or RIGHT ? (circle one)

1) For a 12-bit integer represented with two’'s complement, what is the:

a) Most positive value (in decimal): 2047
b) Binary representation of that number: _0b011111111111
c¢) Most negative value (in decimal): _ -2048
d) Hex representation of that number: e JARNRRRE. . .

e) In general, for an n-bit, two’s complement integer:
i) What is the largest value you can represent, in decimal? Pt acry =i

ii) What is the smallest value you can represent, in decimal? -2%(n-1)

2) Fill in the blank below so that the function mod16 will return the remainder of x when divided by 16.
The first blank should be a bitwise operator, and the second blank should be a single decimal
number:

unsigned int modl6(unsigned int x) {

return x & 15 -

Connect the definition with the name of the process that describes it.

a) Compiler

b) Assembler

¢) Linker

d) Loader
1) Outputs code that may still contain pseudoinstructions. _a__
2) Takes binaries stored on disk and places them in memory to run. _a__
3) Makes two passes over the code to solve the "forward reference" problem. _b__
4) Creates a symbol table. _b__
5) Combines multiple text and data segments. -

)
6) Generates assembly language code. a
7) Generates machine language code. b
8)
9)

o

Only allows generation of TAL.
Only allows generation of binary machine code.

0

(b) 2-input NOR gates are said to be complete because any Boolean function can be computed with them. Prove this
fact. Hint: implement a subsel of the standard gates (AND, NOT, OR, NOR, NAND, XOR, XNOR) using just
NOR gates, then apply a standard boolean algebra technique using these gales,

—

5
NOT A —:] O— Omt

oR § Do) o— out
| -

" S

A :)F_)c
AND _ _W >o—()ut
B - ‘>0

Ising these three gates and applying the sum of products technique we can compute any boolean function.

(¢) We want to implement a very simple finite state machine that determines its next state by the result of and AND
operation on the current state and the input. The output is always the current state. Assume registers have a CLK
to Q delay of 5ns, a setup time of 2ns, and a hold time of 3ns. To achieve a clock rate of 25MIlz, what is the
maximum propogation delay that a NOR gate could have, assuming we are implementing AND as a combination of
one or more of the gates built in part (b)?

Max Delay — CLK-t0-Q + CL + Setup Time
Max Freq — 1/Max Delay ;
25MHz

Alns = 5ns + x + 2ns

x = 33ns

— 40ns

Our implementation of AND has a critical path of 2 NOR. gates, so each NOR. gate must have a delay less than or
equal to 33/2 = 16.5ns

(d) Complete the state diagram for a finile state machine that outputs 1 if and only if it has just seen the input sequence
101 and it has never seen Lthe inpul sequence 001. You may add more arrows or more states as you see fit. Provide
a briefl description of each state.

Example
Input : 1101010100101
Qutput: 0001010100000

‘ N')‘“j RESET

,Mr'l'

Considering the standard 32-bit RISC-V instruction formats, convert 1w t5, 17(t6) to
machine code:

(a) Solution: 0x011FAF03

Prof. Wawrzynek decides to design a new ISA for his ternary neural network accelerator.
e only needs to perform 7 different operations with his ISA: XOR, ADD, LD, SW, LUI,
ADDI, and BLT. He decides that each instruction should be 17 bits wide, as he likes the
number 17. There are no funct7 or funct3 fields in this new ISA.

(b) What is the minimum number of bits required for the opcode field?

Solution: [log,7| = 3

(¢) Suppose Prof. Wawrzynck decides to make the opcode field 6 bits. If we would
like to support instructions with 3 register fields, what is the maximum number of
registers we could address?

Solution: |(17 —6)/3]| = 3 bits per register field which means 8 registers we
could address

Assume we have two arrays input and result. They are initialized as follows:

int *input = malloc(8*sizeof(int));

int *result = calloc(8, sizeof(int));

for (int i = 0; i < 8; i++) {
input[i] = i;

}

You are given the following RISC-V code. Assume register a0 holds the address of input
and register a2 holds the address of result when MAGIC is called by main.

main:

Start Calling MAGIC

addi al, x0, 8

jal ra, MAGIC # a0 holds input, a2 holds result
Checkpoint: finished calling MAGIC

exit:
addi a0, x0, 10
add a1, x0, x0

ecall # Terminate ecall
MAGIC:
TODO: prologue. What registers need to be stored onto the stack?
mv sO, x0
mv t0, x0
loop:

beq t0, al, done

1w t1, 0(a0)

add s0, s0, ti1

slli t2; t0; 2

add t2, t2, a2

sw s0, 0(t2)

addi tO, tO, 1

addi a0, a0, 4

jal x0, loop
done:

mv a0, s0

TODO: epilogue. What registers need to be restored?

jr ra

(a)

(b)

Consider the function MAGIC. The prologue and epilogue for this function are miss-
ing. Which registers should be saved /restored in MAGIC’s prologue/epilogne? Select
all that apply.

O 10 O al
O O a2
O 2

o O ra
O a0 O x0

Assume you have the prologue and epilogue correctly coded. You set a breakpoint
at “Checkpoint: finish calling MAGIC” and call main. What does result contain
when your program pauses at the breakpoint? Please write the 8 numbers starting
at result in the blanks below.

Solution: 0136 10 15 21 28

Translate MAGIC into C code. You may or may not need all of the lines provided
below.

Solution:
// sizeof(int) ==
int MAGIC(int *a, int b, int *c) {
int sum = 0;
for (int i = 0; i < b; i++) {
sum += al[il;
c[i] = sum;
}

return sum;

We wish to introduce a new instruction into our single-cycle datapath. The instruction
SIZ (set if zero) works as follows:

if (R[xrs2] == 0):
R[rd] = R[rsi]

Given the single cycle datapath below, select the correct modifications in parts (a) -
(d) such that the datapath executes correctly for this new instruction (and all core
instructions!). You can make the following assumptions:

e the SIZ signal is 1 if and only il the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

e the immediate generator outputs ZERO when we have a SIZ instruction.

pc+d

alu

B_

P IMEM

aily

pc+d

finst{31:7) Imm. imm(31:0]
en

D
Y L Yy

PCSel inst[31:0] ImmSel RegWEn BrUnBrEqBrlT BSel ASel ALUSel MemRW WBSel

(a) Consider the following modifications to the branch comparator inputs. Which con-
figuration will allow this instruction to execute correctly without breaking the ex-
ecution of other instructions in our instruction set?

E=n— i
E—) o
i
O @2
BrEq
BrEq
BrlT BrLT
@) O

Solution: Note that for this question we have two requirements: the modifica-
tion we pick must support our new instruction AND it must make it so all other
instructions (those in our core instruction set) continue to execute correctly as
if no changes were made. If we look at the logic describing the instruction be-
haviour in the first part of the question, we notice we must compare the value in
register rs2 to zero. Unlike normal branch instructions, we are not comparing to
another register value; we are comparing to a constant. This eliminates choice
A. Noting the conditions of our modification (that it must be able to support
core instructions, too) we can eliminate 1) because it removes the ability to
compare DataA and DataB which we need for regular branch instructions. We
are left with options B and C. Again, il we revisit the instruction logic, we see
the item we're comparing to zero is the value in rs2; this is equal to DataB. We
therefore pick option B which adds a MUX on DataA to allow us to select 0 as
our second operand in the case of a SIZ instruction.

(b) Consider the following modifications to the ALU inputs. Which configuration will
allow this instruction to execute correctly without breaking the execution of other
instructions in our instruction set? Select the configuration that requires minimum
modifications to the original datapath. Notice in the bottom left choice BSel is
unused.

Solution: This modification must also support our new instruction while allow-
ing other instructions to continue executing as normal. This section concerns
inputs to our ALU-the output of which we will write. Looking again at the
instruction logic, we can see the write we need to make is R[rd] = R[rs1]; the
value in register rsl should be written to the rd register. Therefore, the output
of our ALU should be the value in register rsl. Il we look at our datapath, this
is already possible by manipulating existing controls (ASel, BSel), and so we do
not need to make any modifications; A is the correct answer.

(¢) Consider the following modifications to the WB mux inputs. Which configuration
will allow this instruction to execute correctly without breaking the execution of
other instructions in our instruction set? Select the configuration that requires
minimum modifications to the original datapath.

[ALU

@)

Solution: Similar to the previous question, we do not need to make a modifi-
cation to the datapath and should therefore select option A. We know our ALU
is emitting the value stored in register rs2. Because the standard datapath al-
ready allows us to write back the output of our ALU (and because write-back
by default writes to our specified destination register rd), the value in rs2 can
be written back to rd by setting our existing control bit WBSel to ALU. Again,
no modifications are required.

(d) Consider the following modifications to the RegWEn inputs. Which configuration
will allow this instruction to execute correctly without breaking the execution of
other instructions in our instruction set?

Solution: To answer this question we should look at the instruction logic to find
out under what conditions the write occurs. Note that, in the SIZ instruction,
we should only set R[rd] = R[rsl] in the case that R[rs2] == 0 is truec. In
order to check that condition, we need to make sure of two things: (a) the
instruction we’re writing back for should be a SIZ instruction and (b) the result
of the branch equality comparison should be true (BrEq). Because we want
both of these to be true before we write, we use an AND gate. To preserve
existing functionality, we also want to keep our RegWlkn control bit around.
Because the additional logic we added for the SIZ instruction will be false for
all other instructions (add, load, etc.) we use an OR gate to support write-back
functionality for our core instructions.

(e) Given your selections above, decide the rest of the control signals for this instruction
based on the diagram given at the beginning of the problem. Select X when a signal’s
value doesn’t matter. You can assume:

e the SIZ signal is 1 if and only if the instruction is SIZ
e ALUSel is ADD when when we a have SIZ instruction.

e the immediate generator outputs ZERO when we have a SIZ instruction.

1. PCSel:

O1 ®0 Ox

Solution: Though this instruction is similar to other branch instructions in
that it uses the branch comparator to check equality, it does not alter our
control flow as a result, therefore we should select PC as PC+4 like we do
normally.

2. RegWEn:

O 1 (Enable) @ 0 (Disable) OX

Solution: Our write to rd should only happen in the case that our il case is
true. We added logic to support this in the previous question and, in order for
that check to happen, we have to set RegWEn to false. If it were true, we would
write to rd on every SIZ instruction, not just those where Rfrs2| == 0.

3. BrUn:

O 1 (Signed) O 0 (Unsigned) ® X

Solution: We are doing a comparison to zero. Whether the branch comparison
is signed or unsigned has no effect on the outcome.

4. BSel:

O1 oX)) ®X

Solution: We want our ALU to produce rsl as its output. We do not care
what the value of our second operand is (because regardless, it isn’t the output
we want) and therefore it doesn’t matter if we pass in the immediate or DataB.

D. ASel:

[B 0o OX

Solution: Though we don’t care about BSel, we do care about ASel because
this is where we have the option of passing in rsl to the ALU. If we want our
write to contain the correct information, we must select DataA as our input
here.

6. MemRW:

O 1 (Enable) @® ((Disable) O X

Solution: This instruction makes no modifications to memory and therefore
shouldn’t write to memory. The reason we can’t leave this control bit as an X
(don’t care) is because modifying memory is a state change; if we ”don’t care”
and modify memory on some SIZ instructions and not on others, we could end
up overwriting, deleting, or forcing garbage data into our memory and messing
up cxecution of later instructions.

7. WBSel
@® ALUOut O MemOut
O PC+4 O Other: Please specify:

Solution: See solution to part C above

