
Wawrzynek & Weaver
Sp 2018

CS 61C
Great Ideas in Computer Architecture MT 1

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any
academic misconduct will be reported to the Center for Student Conduct, and may result in
partial or complete loss of credit.

Sign your name:

Print your class account login: cs61c- and SID:

Your TA’s name:

Your section time:

Exam # for person
sitting to your left:

Exam # for person
sitting to your right:

You may consult one sheet of paper (double-sided) of notes. You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.

You have 110 minutes. There are 6 questions, of varying credit (90 points total). The
questions are of varying difficulty, so avoid spending too long on any one question. Parts of
the exam will be graded automatically by scanning the bubbles you fill in, so please do
your best to fill them in somewhat completely. Don’t worry—if something goes wrong with
the scanning, you’ll have a chance to correct it during the regrade period.

If you have a question, raise your hand, and when an instructor motions to you,
come to them to ask the question.

Do not turn this page until your instructor tells you to do so.

Question: 1 2 3 4 5 6 Total

Points: 10 20 10 20 15 15 90

Page 1 of 13

Figure 1: This Space Deliberately Left Blank

MT 1 Page 2 of 13 CS61C – SP 18

Problem 1 Number Representation (10 points)

(a) Translate the following decimal numbers into 8-bit two’s complement and unsigned
binary representation in the table below. If a translation is not possible, please
write “N/A”. Write your final answer in hexadecimal format.

Decimal Number Two’s Complement Unsigned Number

10 0x 0x

129 0x 0x

-12 0x 0x

(b) Suppose that we define the negative of x to be just x. We will call this new
number representation scheme one’s complement. Note that the top bit of a
one’s complement number still denotes the number’s sign (0 for positive, 1 for
negative).

Translate the following decimal numbers into 8-bit one’s complement binary repre-
sentation. If the translation is not possible, please write “N/A”. Write your final
answer in hexadecimal format.

Decimal Number One’s Complement

13 0x

-6 0x

(c) What is the range of integers (in decimal format) that we can represent with an
n-bit one’s complement binary number?

MT 1 Page 3 of 13 CS61C – SP 18

Problem 2 C Coding (20 points)

(a) Find the End: Given a acyclic singularly linked list, return a pointer to the last
non-NULL node of the linked list. We have defined the list node struct for the
linked list below. Note that each node contains a string str as data. Return NULL
if the list is empty. You may or may not need every blank but you may not add
additional lines.

typedef struct list node {
char *str;

struct list node *next;

} list node;

list node * find end(list node *start) {

while () {

}

(b) Flatten: Given a binary search tree (BST) with data only stored in the leaf
nodes, generate a linked list with elements of the tree in reverse order (since this
is a BST, the linked list will necessarily be in descending sorted order). The new
linked list should have a full copy of each string in the BST. Return NULL if the
BST is empty. For example, the following BST:

cb

a

Should be turned into a linked list as such:

c b a

MT 1 Page 4 of 13 CS61C – SP 18

You are given a BST tree node struct, the list node struct and find end (assume
it’s correctly implemented). You may use any C standard library functions and may
assume that memory allocation always succeeds. Fill in the blanks to implement
flatten. You may not need all the lines but you must not add additional lines.
typedef struct tree node {

char *str;

struct tree node *left, *right;

} tree node;

char *strcpy(char *dest, const char *src);

list node * find end(struct list node *start); // from part (a)

list node * flatten(tree node *root) {

if ()

if () { // if root is a leaf node

list node *curr =

list node *left list =

list node *right list =

/* TODO: Construct the linked list to return */

}

MT 1 Page 5 of 13 CS61C – SP 18

Problem 3 C Analysis (10 points)
The CS61C Staff is creating songs in preparation of the grading party. Consider the
following program:

#include <stdio.h>

#include <stdlib.h>

typedef struct Song {
char *title;

char *artist;

} Song;

Song * createSong() {
Song* song = (Song*) malloc(sizeof(Song));

song->title = "this old dog";

char artist[100] = "mac demarco";

song->artist = artist;

return song;

}

int main(int argc, char **argv) {
Song *song1 = createSong();

printf("%s\n", "Song written:");

printf("%s\n", song1->title); // print statement #1

printf("%s\n", song1->artist); // print statement #2

Song song2;

song2.title = malloc(sizeof(char)*100);

strcpy(song2.title, song1->title);

song2.artist = "MAC DEMARCO";

printf("%s\n", "Song written:");

printf("%s\n", song2.title); // print statement #3

printf("%s\n", song2.artist); // print statement #4

return 0;

}

MT 1 Page 6 of 13 CS61C – SP 18

(a) What type of address does each value evaluate to? Fill in the entire bubble.

i. song1

Stack address

Heap address

Static address

Code address

ii. song1->title

Stack address

Heap address

Static address

Code address

iii. song1->artist

Stack address

Heap address

Static address

Code address

iv. &song2

Stack address

Heap address

Static address

Code address

v. song2.title

Stack address

Heap address

Static address

Code address

(b) Will all of the print statements execute as expected?

Yes No

If you answered yes, leave this blank. If you answered no, write the number(s) of
the print statement(s) which will not execute as expected.

MT 1 Page 7 of 13 CS61C – SP 18

Problem 4 Sorting With Pointers (20 points)
You are given the following implementation of insertion sort for strings:

1 void string insertion sort(char *str) {
2 char tmp;

3 int inner, outer;

4 outer = 1;

5 while (str[outer] != ‘\0’) {
6 inner = outer;

7 while (inner != 0 && str[inner] > str[inner - 1]) {
8 tmp = str[inner - 1];

9 str[inner - 1] = str[inner];

10 str[inner] = tmp;

11 inner--;

<------ breakpoint here

12 }
13 outer++;

14 }
15 }

It is called like so:
char str[4] = "bdf";

string insertion sort(str);

(a) Trace Execution: Suppose that I’ve set a breakpoint after line 11 (such that the
breakpoint triggers after line 11 executes). Fill in the table for the memory contents
at the breakpoint for the first 2 times this breakpoint triggers. The initial state
refers to the contents of memory on line 2 (right when we enter the function). You
may write either the character or the ASCII code, memory location, OR variable
value respectively.

Addr C Variable Initial State 1st Break 2nd Break
0xA str[0] ‘b’ (98)

0xB str[1] ‘d’ (100)

0xC str[2] ‘f’ (102)

0xD str[3] ‘\0’ (0)

0xE str 0xA

0x11 tmp uninitialized

0xF inner uninitialized

0x10 outer uninitialized

MT 1 Page 8 of 13 CS61C – SP 18

(b) How many more times will the breakpoint trigger?

0

1

2

3

4

5

(c) Is this program correct for all null-terminated strings?

Yes No

If you answered yes, leave this blank. If you answered no, provide a string that
would serve as a counterexample.

Suppose that we revise the above insertion sort algorithm to support a new char-
acter encoding that uses 16 bits (similar to Unicode). These characters are stored
in a 16 bit unsigned integer type (called uni t). The function is identical except
that all variables are now of type uni t instead of char. We will call this function
uni string insertion sort. We call this new sort in a similar fashion:

uni t str[4] = "Ωβα";
uni string insertion sort(str);

Suppose that the first character in str is stored at address 0xFFF8. Answer the following
questions assuming uni string insertion sort is run from the start. If the answer
cannot be determined or would cause an error from the provided information, write
“Unknown”.

(d) After line 4 has executed, what is the value of str + outer?

(e) After line 4 has executed, what is the value of *(str + outer)?

(f) After line 4 has executed, what is the value of str[inner]?

MT 1 Page 9 of 13 CS61C – SP 18

Problem 5 RISC-U ISA (15 points)
Here are the standard 32-bit RISC-V instruction formats taught in lecture for your
reference:

Considering the standard 32-bit RISC-V instruction formats, convert lw t5, 17(t6) to
machine code:

(a) 0x

Prof. Wawrzynek decides to design a new ISA for his ternary neural network accelerator.
He only needs to perform 7 different operations with his ISA: XOR, ADD, LD, SW, LUI,
ADDI, and BLT. He decides that each instruction should be 17 bits wide, as he likes the
number 17. There are no funct7 or funct3 fields in this new ISA.

(b) What is the minimum number of bits required for the opcode field?

(c) Suppose Prof. Wawrzynek decides to make the opcode field 6 bits. If we would
like to support instructions with 3 register fields, what is the maximum number of
registers we could address?

(d) Given that the opcode field is 6 bits wide and each register field is 2 bits wide in
the 17 bit instruction, answer the following questions:

(i) Using the assumptions stated in the description of part (d), how many bits are
left for the immediate field for the instruction BLT (Assume it takes opcode,
rs1, rs2, and imm as inputs)?

MT 1 Page 10 of 13 CS61C – SP 18

(ii) Let n be your answer in part (i). Suppose that BLT’s branch immediate is in
units of instructions (i.e. an immediate of value 1 means branching 1 instruc-
tion away). What is the maximum number of bits a BLT instruction can jump
forward from the current PC using these assumptions? Write your answer in
terms of n.

(iii) Using the assumptions stated in the description of part (d), what is the most
negative immediate that could be used in the ADDI instruction (Assume it
takes opcode, rs1, rd, and imm as inputs)?

(iv) For LUI, we need opcode, rd, and imm as inputs. Using the assumptions
stated in the description of part (d), how many bits can we use for the imme-
diate value?

MT 1 Page 11 of 13 CS61C – SP 18

Problem 6 RISC-V to C Magic (15 points)
Assume we have two arrays input and result. They are initialized as follows:

int *input = malloc(8*sizeof(int));

int *result = calloc(8, sizeof(int));

for (int i = 0; i < 8; i++) {
input[i] = i;

}

You are given the following RISC-V code. Assume register a0 holds the address of input
and register a2 holds the address of result when MAGIC is called by main.

main:

...

Start Calling MAGIC

addi a1, x0, 8

jal ra, MAGIC # a0 holds input, a2 holds result

Checkpoint: finished calling MAGIC

...

exit:

addi a0, x0, 10

add a1, x0, x0

ecall # Terminate ecall

MAGIC:

TODO: prologue. What registers need to be stored onto the stack?

mv s0, x0

mv t0, x0

loop:

beq t0, a1, done

lw t1, 0(a0)

add s0, s0, t1

slli t2, t0, 2

add t2, t2, a2

sw s0, 0(t2)

addi t0, t0, 1

addi a0, a0, 4

jal x0, loop

done:

mv a0, s0

TODO: epilogue. What registers need to be restored?

jr ra

MT 1 Page 12 of 13 CS61C – SP 18

(a) Consider the function MAGIC. The prologue and epilogue for this function are miss-
ing. Which registers should be saved/restored in MAGIC’s prologue/epilogue? Select
all that apply.

t0

t1

t2

s0

a0

a1

a2

ra

x0

(b) Assume you have the prologue and epilogue correctly coded. You set a breakpoint
at “Checkpoint: finish calling MAGIC” and call main. What does result contain
when your program pauses at the breakpoint? Please write the 8 numbers starting
at result in the blanks below.

(c) Translate MAGIC into C code. You may or may not need all of the lines provided
below.

// sizeof(int) == 4

int MAGIC(a, b, c) {

}

MT 1 Page 13 of 13 CS61C – SP 18

