
Nick Weaver
Sp 2019

CS 61C
Great Ideas in Computer Architecture MT 1

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any
academic misconduct will be reported to the Center for Student Conduct, and may result in
partial or complete loss of credit. I am also aware that Nick Weaver takes cheating personally
and, like the Hulk R©, you don’t want to see him angry.

Sign your name:

Print your class account login: cs61c- and SID:

Your Favorite TA’s name:

Exam # for person
sitting to your left:

Exam # for person
sitting to your right:

You may consult one sheet of paper (double-sided) of notes. You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.

You have 110 minutes. There are 6 questions, of varying credit (90 points total). The
questions are of varying difficulty, so avoid spending too long on any one question. Parts of
the exam will be graded automatically by scanning the bubbles you fill in, so please do
your best to fill them in somewhat completely. Don’t worry—if something goes wrong with
the scanning, you’ll have a chance to correct it during the regrade period.

If you have a question, raise your hand, and when an instructor motions to you,
come to them to ask the question.

Do not turn this page until your instructor tells you to do so.

Question: 1 2 3 4 5 6 Total

Points: 15 18 20 15 15 7 90

Page 1 of 22

Problem 1 Free’s Company (15 points)
In project 1-2 we asked you to allocate and free memory for an AST struct. Consider
the following simplified struct.

typedef struct simple ast {
char *filename;

int type;

struct simple ast **children;

int size;

} simple AST;

When Nick was testing the project, he found that he ran out of memory sooner than
expected on large inputs. He attributed this to redundant malloc’s for filenames.
To address this, Nick decides to make one malloc for filenames that are shared between
nodes. The left image below shows what was assumed in the project, and the right image
shows the new, single-malloc scheme.

MT 1 Page 2 of 22 CS61C – SP 19

(a) Nick decides to use the following function to free his ASTs.

void FreeAST (simple AST *tree) {
if (tree != NULL) {

int i;

for (i = 0; i < tree->size; i++) {
FreeAST (tree->children [i]);

}
free (tree->children);

free (tree->filename);

free (tree);

}
}

In 1 sentence explain why Nicks free function will cause problems on the following
input. You may assume all calls to malloc succeed.

char *filename = malloc (sizeof (char) * (strlen("ex") + 1));

strcpy (filename, "ex");

simple AST *tree = MakeAST (...., filename);

simple AST *child = MakeAST (...., filename);

AppendAST (tree, child);

FreeAST (tree);

Solution: The code above will make two calls to free on the same pointer
(filename). We can’t free the same memory twice, this might crash our program!

MT 1 Page 3 of 22 CS61C – SP 19

(b) To fix this problem, Nick decides to take the following approach: he will keep any
address he intends to free in a structure of unique elements. Then, once he has
iterated through the whole tree, he will iterate through the structure and free each
address. Nick creates the following structure for holding the addresses:

typedef struct shared string {
int size;

int capacity;

char **arr;

} shared string t;

Fill in the following function to add addresses to the lst. The function should
not copy the strings themselves. Assume contains returns nonzero if the address
is already in the list and zero otherwise.

void append address (shared string t *lst, char *address) {
if (! contains (lst, address)) {

if (lst->size == lst->capacity) {

;

;

}

;

;

}
}

Solution:
void append address (shared string t *lst, char *address) {

if (! contains (lst, address)) {
if (lst->size == lst->capacity) {

lst->capacity *= 2;;

lst->arr = realloc(

lst->arr,

sizeof(char*) * lst->capacity);

}
lst->arr[lst->size] = address;

lst->size += 1;

}

MT 1 Page 4 of 22 CS61C – SP 19

(c) Finally we will implement FreeAST. This function should free all memory associ-
ated with the given simple AST and should not exhibit the problem you described
in part (a). You may assume the existence of the following helper functions:

/* This function allocates memory for a shared string t and initalises

it. It returns the pointer to the malloc’d memory. You may assume all

calls to malloc succeed. */

shared string t *create list ();

/* This function frees the given simple AST node and its children. It

also adds each filename to the given shared string t struct so it can be

deleted later. */

void FreeASTHelper (simple AST *tree, shared string t *addr list);

Fill in the remaining sections of FreeAST. Note the function should not leak any
memory.

void FreeAST (simple AST *tree) {
if (tree != NULL) {

shared string t *lst = create list ();

FreeASTHelper (tree, lst);

int i;

for (i = 0; i < lst->size; i++) {

;

}

;

;

}
}

MT 1 Page 5 of 22 CS61C – SP 19

Problem 2 Remember-y Management (18 points)
For this problem, assume all pointers are four bytes and all characters are one byte.
Consider the following C code (all the necessary #includes are omitted). C structs are
properly aligned in memory and all calls to malloc succeed.

int size = 0;

struct map entry {
char *key;

char *value;

};

void add entry(struct map entry *m, char *k, char *v) {
int *zero = NULL;

m[size].key = k;

m[size].value = v;

size++;

}

void main(void) {
struct map entry *map = malloc(sizeof(struct map entry) * 10);

char *key = malloc(sizeof(char) * 10);

char value[20];

add entry(map, "k", "v");

add entry(map, key, value);

}

(a) For each of the following, bubble the option that best describes where in the memory
layout each variable is stored You should select one answer per variable.

(a) zero

Stack

Heap

Static

Code

(b) *map[0].key

Stack

Heap

Static

Code

(c) map[1].value

Stack

Heap

Static

Code

MT 1 Page 7 of 22 CS61C – SP 19

(d) add entry

Stack

Heap

Static

Code

(e) Bubble the comparators that would make the following expressions evaluate to true.
If there is not enough information in the problem to answer conclusively, select the
last option. Assume malloced memory grows upward, allocating the first available
address.

(a) map zero

>

<

==

Not enough information

(b) key &size

>

<

==

Not enough information

(c) map key

>

<

==

Not enough information

(d) value &zero

>

<

==

Not enough information

(e) How many bytes of memory are leaked by this program?

Solution: 90 Bytes

MT 1 Page 8 of 22 CS61C – SP 19

Problem 3 AST: Another Stupid Tree (20 points)
In this problem, we will revisit a simplified version of the AST from Project 1-2. Our
version is shown below. We are interested in implementing a function that searches our
AST for a given piece of data and, when found, replaces the data with a value returned
by (*f)(data). We will search for and replace ever occurrence of the data inside our tree.

Struct AST Simple {
Struct AST Simple **children;

int size;

int data;

}

void SearchAST (struct AST Simple *ast, int data, int (*f)(int)) {
int i = 0;

/* If the AST is NULL, no match */

if (ast == NULL) {
return;

}

/* If the head node contains our data, we found a match */

if (ast->data == data){
ast->data = (*f)(data);

}

/* Search for the data within the children nodes */

for (; i < ast->size; i++){
searchAST(ast->children[i], data, f);

}
}

MT 1 Page 9 of 22 CS61C – SP 19

Arguments follow the RISC-V calling convention

SearchAST:

Prologue

addi sp sp

sw

sw

sw

sw

sw

Preserve and set arguments

add s3 x0 x0

mv s0 a0

mv s1 a1

mv s2 a2

Start computing

IfOne:

bne

j

IfTwo: # Have we found what we’re looking for?

lw t0

bne

Loop: # Check our children

lw t0

bge

lw t0

slli t1

add t2

Prepare for recursive call

lw a0

jal

j

Done: # Epilogue

lw

lw

lw

lw

lw

addi sp sp

jr ra

MT 1 Page 10 of 22 CS61C – SP 19

Loop: # Check our children

lw t0 4(s0) # Load ast->size

bge s3 t0 Done # if i >= size we return

lw t0 0(s0) # load ast->children

slli t1 s3 2 # t1 == i << 2 to create byte offset to i’th child

add t2 t1 t0 # Pointer addition to get &(lst->children[i])

Prepare for recursive call

lw a0 0(t2) # now load ast->children[i] to a0

mv a1 s1 # and make sure a1 is set...

mv a2 s2 # and a2...

jal ra SearchAST # and now recurse

addi s3 s3 1 # and increment i

j Loop # and continue the loop

Done: # Epilogue: restore saved registers, ra

lw s0 0(sp)

lw s1 4(sp)

lw s2 8(sp)

lw s3 12(sp)

lw ra 16(sp)

addi sp sp 20

Return to caller

jr ra

Problem 4 Do you see what IEC? (15 points)

(a) IEC Prefixes

1. The human genome is approximately 3,200 Mega-base pairs. How many base
pairs is 3,200 Mega-base pairs? For credit you must format your answer using
powers of 10 (ie * 10 ˆ).

Solution: 3, 200 ∗ 106 base pairs

2. Ram wants to sell you a floppy disk with 8 (marketing) KIBIbytes memory
for 16 dollars. Sruthi also wants to sell you a floppy disk, with 8 (marketing)
KILObytes memory for 10 dollars.

(a) For Rams floppy disk, how many bytes are on the floppy disk? Do not
simplify.

MT 1 Page 12 of 22 CS61C – SP 19

Bytes

Solution: 8192 Bytes

(b) For Rams floppy disk, how many bytes per dollar?

Bytes per dollar

Solution: 512 Bytes per dollar

(c) For Sruthis floppy disk, how many bytes are on the floppy disk? Do not
simplify.

Bytes

Solution: 8000 Bytes

(d) For Sruthis floppy disk, how many bytes per dollar?

Bytes per dollar

Solution: 800 Bytes per dollar

MT 1 Page 13 of 22 CS61C – SP 19

(b) Number Representation

1. Because Moores Law is dead, its time to try storing data in something alive.
A DNA strand is composed of a linear sequence of chemical base pairs, and
we can consider each of its 4 base pairs (A, C, T, G) as a ”digit” How many
unique values can be stored in an X-base pair DNA strand? Your answer should
contain the variable X.

unique values

Solution: 4X unique values

2. Assume we use DNA to store data in base-4, unsigned. A = 0, C = 1, T = 2,
and G = 3, with the most significant base pair first. Use the number-equivalent
of each base to format your answers below.

(a) How do we store the decimal (base-10) number 36 in DNA?

Solution: 10 01 00
0dTCA (or 0dATCA)

(b) How do we store the binary (base-2) number 0b01111100 in DNA?

Solution: 01 11 11 00
0dCGGA

(c) How do we store the hexadecimal (base-16) number 0x7AB in DNA?

Solution: 0x7AB == 0b0111 1010 1011 == 0b01 11 10 10 10 11
0dCGTTTG (or 0dA...ACGTTTG)

(d) Convert GATTACA to binary

0b

MT 1 Page 14 of 22 CS61C – SP 19

Problem 5 More Poorly Written Instructions (Project 1-3) (15 points)
As much as we love working in RISC-V, TAs and students everywhere are tired of having
to transcribe 32-bits for every instruction. We’d like to invent a new machine language
based on RISC-V that uses fewer bits overall.

To make this change possible, our reduced instruction set will contain only the following
instructions:

1. add

2. addi

3. beq

4. jal

Additionally, we will group together all immediate bits and place them at the end of
the instruction. If we rearrange the standard RISC-V SB-type to match our immediate
adjustment, it would look like the following:

rs2 rs1 func3 opcode imm[11:0]

The instructions beq and jal will encode the entire immediate necessary for control flow
and do not append a trailing zero. We would like to continue to support the use of all
32 registers.

1. Lets say we decide to remove the funct3 and funct7 fields so that our R-type format
looks like the following:

opcode rd rs1 rs2

How many bits do we need to represent each of the following fields?

Opcode: bits

rd: bits

rs1: bits

rs2: bits

Solution:
Opcode: 2 bits

rd: 5 bits

rs1: 5 bits

rs2: 5 bits

Because we only have four instructions, there’s only log(4)=2 bits

MT 1 Page 16 of 22 CS61C – SP 19

needed for the opcode. However, we still need to support all 32

registers, meaning log(32) = 5 bits for rd, rs1, and rs2.

2. Using the values in your previous answer (and assuming all instructions must be
the same total size), how many bits would we have for the immediate field in an I
type instruction?

Imm: bits

Solution: Imm: 5 bits

From the previous part, we know that instructions must be 17 bits.

I-type instructions have opcode, rd, rs1, and imm. Resulting in

16 - 2 - 5 * 2 = 5 bits.

3. Because we only have 4 instructions, we cant represent all of our instruction types.
Which types are missing from our language? Mark all that apply.

R

I

S

SB

U

UJ

Solution:
We know that add is R-type, addi is I-type, beq is SB-type,

and jal is UJ-type. Meaning we don’t have S-type and U-type.

4. For the following question, mark the statement as true or false and give a tweet-
length justification. (if true, mention which two formats). Assume we consider all
register fields (rs1, rs2, rd) the same.

Two of our instruction formats have the exact same field ordering

True False

MT 1 Page 17 of 22 CS61C – SP 19

5. Now assume our instructions match the format above but are 8 bits in length. If
we have 2 bits of the opcode and 2 bits for registers (which may or may not reflect
answers in previous parts), convert the following instructions.

Opcodes
0b00 add
0b01 addi
0b10 beq
0b11 jal

Registers
0b00 zero
0b01 ra
0b10 s0
0b11 t0

Labels
One One byte forward
Two Two bytes forward

BOne One byte backward
BTwo Two bytes backward

(a) addi zero, ra, -1

Solution: 0b01000111. We go opcode, rd, rs1, rs2/imm.
This means 0b01|0b00|0b01|0b11 = 0b01000111.

(b) 0b10101110

Solution: beq s0 t0 BTwo. We check the opcode, 0b10, which means it
is beq. rs1 and rs2 are 0b10 and 0b11, respectively are s0 and t0.
Our imm is 0b10, which equals -2, meaning we want to go two bytes back.

MT 1 Page 19 of 22 CS61C – SP 19

Problem 6 CALL: Crammed At the Last Lecture (7 points)

(a) Mark the following as either True or False

1. The linker reads in one or more object files and generates an executable or
library.

True False

2. The assembler may remove pseudo instructions before passing the file to the
linker, though this step is optional because pseudo instructions are understood
by machines.

True False

3. The 61Ccc compiler you wrote in projects 1-1 and 1-2 is considered a complete
compiler in that it converts c-like files to assembly code.

True False

4. Executable files generated by CALL are machine-dependent.

True False

MT 1 Page 20 of 22 CS61C – SP 19

(b) Consider an assembler that analyses code top-to-bottom in a single pass. Which of
the following isolated blocks of code exhibit the forward reference problem? Bubble
all that apply.

LOOP:

beq t0 t1 END

addi t0 t0 1

sw t0 0(s0)

j LOOP

END:

CALL:

jal ra F

la a0 CALL

F:

addi sp sp -4

sw s0 0(sp)

add t0 t0 x0

addi t1 x0 3

REDO:

addi t0 t0 1

slli s1 t0 2

LOOP:

bne t0 t1 REDO

add s0 s1 x1

lw t0 0(s0)

j LOOP

F X:

mv t0 a0

addi t0 t0 4

lw a1 0(t0)

jr ra

G X:

mv a0 s0

jal ra F X

MT 1 Page 21 of 22 CS61C – SP 19

Figure 1: This Space Deliberately Left Blank

MT 1 Page 22 of 22 CS61C – SP 19

