
 
University of California, Berkeley – College of Engineering 

Department of Electrical Engineering and Computer Sciences 
Summer 2019    Instructors: Branden Ghena, Morgan Rae Reschenberg, Nicholas Riasanovsky    2019-08-15 

CS61C FINAL 
Last Name (Please print clearly)  

First Name (Please print clearly)  

Student ID Number  

Circle the name of your Lab TA 

 

Ayush 
Maganahalli 

Chenyu  
Shi 

Gregory 
Jerian 

Jenny  
Song 

John  
Yang 

Lu  
Yang 

Ryan  
Searcy 

Ryan 
Thornton 

 

Name of the person to your: Left | Right   

All my work is my own. I had no prior knowledge of the exam 
contents nor will I share the contents with others in CS61C who 

haven’t taken it yet. (please sign) 

 

 

Instructions 
● This booklet contains 30 pages including this cover page.  The back of each page of this exam is 

blank and can be used for scratch work, but will not be graded. 
● Please turn off all cell phones, smartwatches, and other mobile devices.  Remove all hats and 

headphones.  Place everything except your writing utensil(s), cheat sheet(s), and beverage underneath 
your seat. 

● You have 170 minutes to complete this exam.  The exam is closed book: no computers, tablets, cell 
phones, wearable devices, calculators, or cheating.  You are allowed three pages (US Letter, 
double-sided) of handwritten notes. 

● There may be partial credit for incomplete answers; write as much of the solution as you can.  
● Please write your answers within the boxes and blanks provided within each problem! 

 

Question 1 2 3 4 5 6 7 8 9 10 11 Total 

Possible Points 19 8 24 25 18 12 18 10 17 8 21 180 

 
If you have the time, feel free to doodle on the front page!  

1 



 
Question 1: Potpourri - 19 pts 
 
Select which stage of CALL (compiler, assembler, linker, loader) is responsible for the following 
actions: 
 
 
1. Provides the address printed by: printf(“%p”, “cs61c”). 
 

Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 

2. Places the string “cs61c” in RAM. 
 
Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 
3. Removes all pseudo instructions. 
 
Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 
4. Can always provide the correct immediate value when translating all la instructions. 
 
Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 
5. Can always provide the correct immediate value when translating all li instructions. 
 
Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 
6. Stage most often responsible for loop unrolling. 
 
Ⓐ Compiler                 Ⓑ Assembler                 Ⓒ Linker                Ⓓ Loader 
 
 
 
 
 
 
 

2 



 
You propose a new 16 bit floating point number. It has: 

● 1 sign bit 
● 11 exponent bits 
● 4 significand bits 
● A bias of 1023 
● All other rules consistent with IEEE 754 floating point. 

 
 
7. Represent 4.75 in our new floating point scheme 
 
 
 
 
 
Sign:0b__________________________________________________________________________ 
 
 
Exponent: 0b_____________________________________________________________________ 
 
 
Significand:0b ___________________________________________________________________ 
 
8. How many numbers does our floating point scheme represent in the range [0, 1) (the range 0 to 1, 

where 0 is included and 1 is not)? For this question assume -0 is not in this interval. You may leave 
your answer unsimplified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
____________________________________________________________ numbers 

3 



 
Now let’s compare to a 16 bit two’s complement number. 
 
9. Which can represent a larger number (ignore infinities)? 
 
Ⓐ Our Floating Point Scheme                                       Ⓑ Two’s Complement 
 
 
10.Which scheme represents more numbers in the range [1, 64)? 
 
Ⓐ Our Floating Point Scheme                                       Ⓑ Two’s Complement 
 
 
11.Which scheme represents more numbers in the range [64, 128)?  
 
Ⓐ Our Floating Point Scheme                                       Ⓑ Two’s Complement 
 
 
12.You are doing an internship project for a big tech company and need to speed up your program. 

You find that your program calls easily parallelizable code 40% of the time, so you use #pragma 
openmp parallel for to split up that work into 8 threads. You also implement SIMD for other 
sequential functions run in a single thread, which are called 50% of the time. If initially your 
program takes 20s to run and you want it to take 10s to run, how much speedup is needed from 
your SIMD functions to achieve it? Leave your answer as a fraction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIMD Speedup:   _______________________________________________________  

4 



 
13. The following OpenMP code will properly sum an input array: 
 

// Sums the elements of the array 

void sum_array(int* array, unsigned int size) { 
  int sum = 0; 
  #pragma omp parallel for 
  for (int i=0; i<size; i++) { 
    sum += array[i]; 
  } 
} 

 
 

Ⓐ Always                Ⓑ Sometimes                Ⓒ Never 
 
 
 
 
14. The following OpenMP code will properly copy an input array into an output array: 
 

// Copies an input array into an output array 

void sum_array(int* array, int* output, unsigned int size) { 
  #pragma omp parallel for 
  for (int i=0; i<size; i++) { 
    output[i] = array[i]; 
  } 
} 

 
 

Ⓐ Always                Ⓑ Sometimes                Ⓒ Never 
 
  

5 



 
Question 2: FSM - 8 pts 
FSM Question For the following Finite State Machine, fill out the remainder of the table. 

 
 
 
 

Input - 1 0 0 1 1 0 0 0 

Next State A         

Output -         
 
 

 
  

6 



 
Question 3: C Coding - 24 pts 
 
In this question we are going to implement a double-ended queue data structure, which is a data 
structure in which you an insert to either end. To do so we will allocate a single array to store all data 
contiguously, but because we need to append to both ends we will implement our array as a circular 
buffer. A circular buffer is a way of wrapping around an array while maintaining the ordering. For 
example imagine the following implementation where we append to the left of our queue with an initial 
value of 3. 
 
// Initially q->data = [garbage, 3, garbage]; 

append_left (q, 2) // Now q->data = [2, 3, garbage] 

append_left (q, 1) // Now q->data = [2, 3, 1];  

// We keep track of the order with additional struct fields. 

 
Notice that we fill the array entirely and move from one end to the other when we run out of space. To 
implement our queue we have provided a struct and a constructor on the handout. 

   
1. Implement print_reverse_dqueue which prints each valid element in the array from the end to the 
front (left to right) with each element on a newline. You may not need all lines.  
 

#include <stdio.h>     
void print_reverse_dqueue (int_dqueue_t* q) { 

for (___________________________________________________________________) { 

int location = _____________________________________________________; 

if  (_____________________________________________________________) { 

 _______________________________________________________________; 

} 

printf (__________________________, _______________________________); 

} 

}  

7 



 
One issue that complicates our queue is what happens when we need to resize. With other data 
structures we can use realloc, but imagine we have the following full data where the actual order of the 
data is 1, 2, 3, 4. 
 
q->data = [3, 4, 1, 2]; 

 
If we were to reallocate the queue to size we would then get: 
 
q->data = [3, 4, 1, 2, garbage, garbage, garbage, garbage] 

 
Now if we only realloc we can’t maintain our ordering, so we need to do some extra work when 
resizing.  

    
2. Implement expand_buffer which takes in a queue that is full and reallocs circular buffer while 
maintaining the previous ordering. You can assume all calls to realloc succeed and you may not need 
all lines. 
 
Recall the header for realloc is: 
 
void* realloc (void* ptr, int size); 
 
Hint: You probably only want to change either left_location or right_location, not both 
 
#include <stdlib.h>    
void expand_buffer (int_dqueue_t* q) { 

q->allocated_size *= 2; 

q->data = realloc (__________________, __________________________________); 

for (___________________________________________________________________) { 

____________________________________________________________________; 

} 

__________________________________________________________________________ 

__________________________________________________________________________ 

__________________________________________________________________________ 

__________________________________________________________________________ 

}  

8 



 
Question 4: RISC-V - 25 pts 
 
1. Translate the body of mystery from the handout from C to RISC-V. Assume that a correct prologue 

and epilogue that adheres to the calling convention learned in class is provided. You may not need 
all lines. You may only use registers a0-a7, t0-t5, s0-s4, ra, and sp. 

 
.data 

stringPrint: .asciiz “%s\n”  

intPrint:    .asciiz “%d\n” 

.text 

mystery: mv s0 a0 #src 

 mv s1 a1 #dest 

mv s2 a2 #length 

add s3 x0 x0 #charSum 

add s4 x0 x0 #encryptCircular 

LoopStart:  bge ______________________________________________________ LoopEnd 

# Load source value once 

__________________________________________________________ 

__________________________________________________________ 

# Compute all adds 

__________________________________________________________ 

__________________________________________________________ 

__________________________________________________________ 

# Store in dest 

__________________________________________________________ 

__________________________________________________________ 

# Make the first call to printf

__________________________________________________________ 

__________________________________________________________ 

jal printf 

addi s4 s4 1 

j LoopStart 

LoopEnd: __________________________________________________________ 

__________________________________________________________ 

jal printf 

__________________________________________________________ 

__________________________________________________________ 

jal printf  

9 



 
2. Complete the prologue and epilogue for the mystery function. Use the calling convention learned in 

class. You may not need all lines. 
 
 
Prologue: 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

mystery: ... 

Epilogue: 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

 

  

10 



 
Question 5: Data-Level Parallelism - 18 pts 
Help John write a program that will take the norm of an array using SIMD instructions. The norm of an array is 
defined as the square root of the sum of the squared elements of the array. In other words, the norm is equal to 

, where n is the size of the array. 
 
To make this calculation fast, we will use SIMD instructions. However, instead of the nonsense Intel SIMD 
instructions, you can (and must) use any of the functions on your handout. Fill in the following C code. You may 
not need all lines. 
 
// Returns the norm of ARR, which is an array of length SIZE 

 

double norm(double arr[], unsigned int size) { 

simd_t sum_vec = simd_set_value(0); 

 

// SIMD Code 

for (int i = 0; ____________________________; ________________________________) { 

 

 

simd_t temp_vec = ________________________________________________________; 

 

__________________________________________________________________________; 

 

__________________________________________________________________________; 

} 

 

double sum_arr[______________________]; 

 

_______________________________________________________________________________; 

 

double ret_val = ______________________________________________________________; 

 

// Tail Case 

for (int i = __________________; ______________________; _____________________) { 

 

 

__________________________________________________________________________; 

 

 

__________________________________________________________________________; 

} 

// Square root 

return sqrt(___________________________________________________________________); 

}  

11 

https://www.codecogs.com/eqnedit.php?latex=%5Csqrt%7B%7B%5Ctexttt%7Barr%5B0%5D%7D%7D%5E2%20%2B%20%5Cdots%20%2B%20%5Ctexttt%7Barr%5Bn-1%5D%7D%5E2%7D%0


 
Question 6: RAID + ECC - 12 pts 
 

 
 
For the following ECC questions, assume that the parity is calculated using ODD parity (ie. the 
opposite of the even parity we learned in lecture). Use the above Hamming Code table to locate parity 
and data bits within a codeword string.  
 
1. Given the following string of data bits (from left to right), what should our parity bits be? If a parity 

bit is unnecessary for this data string, write N/A in the blank. 
 

Data: 0 0 1 1 0 1 0 1 
 
 
 
 
 

P1 = ________      P2 = ________      P4 = _________      P8 = _________      P16 = ________ 
 
 
2. We store the data in memory and read it out moments later as 01110101. The underlined bit 

differs. When we re-do our parity calculations, which bits can we expect to be incorrect due to this 
error? Mark all that apply.  

 
 

[  ] P1                [  ] P2                [  ] P4                [  ] P8                [  ] P16 
 
 
3. Given a data string that is 97 bits long, how many parity bits must we use to provide single error 

detection and single error correction?  
 
 
 
 
 

_____________________ parity bits  

12 



 
For the questions below, identify the type of disk system being described, both or neither. 
 
4. Provides Fault Tolerance. If a disk suffers a failure and the data on it is lost, it can be recovered. 
 
Ⓐ Striping                        Ⓑ Mirroring                        Ⓒ Both                         Ⓓ Neither 
 
 
 
5. Provides a performance improvement (i.e. faster read and write operations) 
 
Ⓐ Striping                        Ⓑ Mirroring                        Ⓒ Both                         Ⓓ Neither 
 
 
 
6. Requires more than one disk or storage device to implement in practice. 
 
Ⓐ Striping                        Ⓑ Mirroring                        Ⓒ Both                         Ⓓ Neither 
 
 
 
7. RAID 0 
 
Ⓐ Striping                        Ⓑ Mirroring                        Ⓒ Both                         Ⓓ Neither 
 
 
 
8. RAID 1 
 
Ⓐ Striping                        Ⓑ Mirroring                        Ⓒ Both                         Ⓓ Neither 
 
 
 
9. True or False: “RAID 0 is more capable of tolerating disk failures than RAID 1” 
 
Ⓐ True     Ⓑ False  
  

13 



 
Question 7: Caches - 18 pts 
Dynamic Programming is an algorithm used to reduce the runtime of recursions by storing 
intermediate results to an array. fib_dynamic below is an example of calculating Fibonacci numbers 
using dynamic programming: 
  

int fib_dynamic(int number) {  

  /* Declare an array to store Fibonacci numbers. */ 

  int f[number+1]; 

  int i;  

  

  /* 0th and 1st number of the series are 0 and 1*/ 

  f[0] = 0;  

  f[1] = 1;  

  

  for(i = 2; i <= number; i++) {  

      /* Add the previous 2 numbers in the series  

         and store it */ 

      f[i] = f[i-1] + f[i-2];  

  }  

  return f[number];  

}  

 

We have a 2-way set associative cache with 256 total bytes and 16 bytes per block. The cache is 
write back with a write allocate on miss policy. Assume sizeof(int) == 4, sizeof(long) == 8, 
and that f is at a block-aligned address. We also have 1 MiB of physical memory and no virtual 
memory. Assume that for all questions the cache begins cold and that all questions are independent. 
You should assume i and number are optimized into registers. 
 

 

1.    How many bits are in the tag, index and offset fields? 

 

Tag: _________________________________________ 

 

 

Index: _________________________________________ 

 

 

Offset:_________________________________________ 

14 



 
 

2.    What is the hit rate if we run fib_dynamic(32)? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HR: ________________________________________________________________ 
 
 
 
3.    Would our hit rate increase, decrease or stay the same if instead we had a write through cache 
with a no write allocated on miss policy? 
 
 
 
 
 
 
Ⓐ Increase                               Ⓑ Decrease                     Ⓒ Stay the same 
 

15 



 
Noticing that int can only accommodate the first 47 Fibonacci number without overflowing, we change 
the type of array f in which we store the intermediate result to be long f[n+1]instead. Assume our 
cache is still 2-way set associative cache with 256 total bytes and 16 bytes per block and write 
back with a write allocate miss policy. 
 
4.    What is the hit rate if we run fib_dynamic(64)?  
 
 
 
 
 
 
 
 
 
 
 
 
HR: ________________________________________________________________ 
 
 
5.    What is the smallest value of  number that causes a capacity miss? Select N/A if there is never a 
capacity miss. 
 
 
 
 
 
Ⓐ 8    Ⓑ 16    Ⓒ 32    Ⓓ 64    Ⓔ 128    Ⓕ 256    Ⓖ 512    Ⓗ  1024    Ⓘ N/A 
 
 
6.     What is the smallest value of number that causes a conflict miss? Select N/A if there is never a 
conflict miss. 
 
 
 
 
 
 
Ⓐ 8    Ⓑ 16    Ⓒ 32    Ⓓ 64    Ⓔ 128    Ⓕ 256    Ⓖ 512    Ⓗ  1024    Ⓘ N/A 
  

16 



 
Question 8: Spark - 10 pts 
 
Map-Reduce & Spark  
 
We are given a dataset from a gym and we want to find the average use time for each type of 
machine. Fill in the blanks for the python pseudocode using map-reduce ideas. (Your specific python 
syntax is not important as long as your answer is clear.) Assume each machine works independently 
and there is no time overlap for one machine. 
 
Sample Input (MachineType, MachineID, start_time, end_time): 
Treadmill 1 8:00 8:30 

Treadmill 1 8:32 8:42 

Treadmill 2 10:05 10:25 

Seated_overhead_press 1 14:05 14:17 

 

Sample Output (MachineType, average_use_time): 
(Treadmill, 30) 

(Seated_overhead_press, 12) 

 

Explanation: Treadmill 1 is used for 40 minutes and Treadmill 2 is used for 20 minutes, so the average 
Treadmill use time is 30 minutes. 
 

Refer to the Spark section of the handout for a list of helper functions you can use. 
 
The code to fill in is on the next page. 
  

17 



 
def parseInput(lines): 

  result = [] 

  for line in lines: 

    tokens = line.split(“ “) 

    timediff = time_elapse(_______________________,_______________________) 

    result.append(tuple(tuple(tokens[0], tokens[1]), timediff)) 

  return result 

 

def count_time(v1, v2): 

 

 

  return __________________________________________________________________ 

 

def group_by_type(k, v): 

 

 

  return __________________________________________________________________ 

 

def count_ids(v1, v2): 

 

 

  return __________________________________________________________________ 

 

def average(k, v): 

 

 

  return __________________________________________________________________ 

 

# You do not need to edit this function, but it may be helpful to reference 

# Assume Spark has been properly configured and the return is written to a file 

def main(rsfData): 

  out = rsfData.flatmap(parseInput) \ 

      .reduceByKey(count_time) \ 

          .map(group_by_type) \ 

              .reduceByKey(count_ids) \ 

                  .map(average) 

  return out  

18 



 
Question 9: Datapath - 17 pts 
Now that you’ve (almost) finished CS61C, you decide to spend your free time beefing up your 
favourite project: our RISC-V CPU! After the quick work of changing your datapath from a 2-stage to 
5-stage pipeline, you’re interested in adding forwarding.  
 
1. Before adding forwarding logic, we need to change our CPU to detect hazards that can be solved 

by forwarding. Fill in the blanks in the following statement to describe which instruction fields 
should be compared to identify forwarding cases. You may select more than one option if 
necessary.  
 
Assume our pipeline currently contains the following instructions: 

 

IF ID EX MEM WB 

Inst 1  Inst 2 Inst 3 Inst 4 Inst 5 
 

We need to check for equality between the __A__ register(s) of inst(s) __B__ and the __C__ 
register(s) of inst 3.  

 
 

A) [  ] source             [  ] destination 
 
 

B) [  ] 1           [  ] 2          [  ] 3         [  ] 4         [  ] 5 
 
 

C) [  ] source             [  ] destination 
 
 
 
 
  

19 



 
2. Feeling a little overwhelmed with forwarding, you try to break the problem down into small pieces. 

First you consider the case where we need to forward from our ALU output to the next EX stage as 
an argument: 

addi t0 t1 10      IF    ID    EX    MEM    WB 
add  s0 t0 t3            IF    ID    EX     MEM    WB 

 
Assume you’ve been able to implement the logic described in part 1, and this logic exists as a 
control bit EXEXFwd, which is 1 when we should forward from EX to EX and 0 otherwise.  

 
 

Which ASel model correctly uses this new control bit? (circle the correct choice) 
 
                  Ⓐ  A                          Ⓑ  B                    Ⓒ  C                 Ⓓ  D 
 
 

 
  

20 



 
3. Given the change to ASel you picked above, will the following chunk of code execute correctly? 

Why or why not?  
slli t0 t1 10      IF    ID    EX    MEM    WB 
add  s0 t3 t0            IF    ID    EX     MEM    WB 
 

Ⓐ Yes, it will execute correctly Ⓑ No, it will not execute correctly 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

 

 

 

4. After some time, you get your EX to EX forwarding working correctly, but you start to realise you 
need to forward from other locations to EX as well (ie. MEM to EX): 

addi t0 t1 6 IF ID EX MEM WB 

slli t0 t0 2 IF ID EX MEM WB 

slti t0 t0 8 IF ID EX MEM WB 
 
You’d like to chain your EXEXFwd sub-circuit together with your other forwarding logic such 
that changes to a register prioritize forwarding from the most recent instruction. Order the 
following sub circuits from 1 to 3 with 1 being leftmost (lowest priority) and 3 being rightmost 
(highest priority) such that the subcircuits will always output the most current value to forward. 
 

___ WB to EX 
 
___ EX to EX 
 
___ MEM to EX 
  

21 



 
5. You finish installing hardware for forwarding EX to EX, MEM to EX, and WB to EX, but find this 

isn’t sufficient to allow all combinations of instructions to execute correctly in your five stage 

pipeline; you still experience load hazards. Answer the following questions to prove why forwarding 

is impossible for load hazards.  

 

lw  t0 0(a0)    IF    ID    EX    MEM    WB 
add t3 t0 t2          IF    ID    EX     MEM    WB 

 

 

a.  What is the earliest stage at which the load data is ready/available to forward? Circle 

one stage.  

 

lw t0 0(a0)           IF               ID               EX               MEM               WB 

 

 

b. Where is the latest stage by which the load data could be consumed/received from 

forwarding? Circle one stage. 

 

add t3 t0 t2          IF               ID               EX               MEM               WB  

  

22 



 
6. We can detect a load hazard after we have fetched the dependent instruction (add, in our previous 

example), and so this is the earliest point at which we can stall. We’d like to add a MUX between 

our ID and IF stages. This MUX should current instruction to a NOP if a load hazard exists. 

Assume we have a new control bit LoadHazard which is 1 when a load hazard is present and 0 

otherwise. Where should we connect tunnels A, B, and C? Select one option for each letter.  

 

 

A:  

Ⓐ IMEM output        Ⓑ ID input (RegFile parser input)        Ⓒ PC        Ⓓ NOP instruction 

 

B:  

Ⓐ IMEM output        Ⓑ ID input (RegFile parser input)        Ⓒ PC        Ⓓ NOP instruction 

 

C:  

Ⓐ IMEM output        Ⓑ ID input (RegFile parser input)        Ⓒ PC        Ⓓ NOP instruction 

 
 
  

23 



 
 
Question 10: Digital Logic - 8 pts 
 

Determine the value of the signals A and B from the following circuit given the waveform diagram 
below. All registers are rising-edge triggered, have a setup time of 1 ns, a hold time of 1 ns, and a 
clock-to-q delay of 3 ns. The propagation delay through AND and OR gates is 4 ns, and the 
propagation delay through NOT gates is 2 ns. 

 
 
Both output signals start low while the value of Ready changes as shown. You may fill out the 
waveform diagram if you find it helpful, but you will only be graded on your answers to the multiple 
choice questions which begin on the next page. 

 

 
 
 

 

  

24 



 
What is the value of the output signals at time 15 ns? (circle the correct answer for each signal) 
 

1. Signal A: Ⓐ High Ⓑ Low Ⓒ Undefined 
 

2. Signal B: Ⓐ High Ⓑ Low Ⓒ Undefined 
 
 
 
What is the value of the output signals at time 35 ns? (circle the correct answer for each signal) 
 

3. Signal A: Ⓐ High Ⓑ Low Ⓒ Undefined 
 

4. Signal B: Ⓐ High Ⓑ Low Ⓒ Undefined 
 
 
 
What is the value of the output signals at time 65 ns? (circle the correct answer for each signal) 
 

5. Signal A: Ⓐ High Ⓑ Low Ⓒ Undefined 
 

6. Signal B: Ⓐ High Ⓑ Low Ⓒ Undefined 
 
 
 
What is the value of the output signals at time 85 ns? (circle the correct answer for each signal) 
 

7. Signal A: Ⓐ High Ⓑ Low Ⓒ Undefined 
 

8. Signal B: Ⓐ High Ⓑ Low Ⓒ Undefined 
 
 

  

25 



 
Question 11: Virtual Memory - 21 pts 
 

Morgan wonders if she can decrease the overall cost of virtual memory by changing the page size of some 
pages on her machine. To do this, she combines ideas from both segmented and paged memory models 
creating a scheme she calls “Page-mented Virtual Memory”. It works as follows:  
 
Morgan divides 4 KiB of physical memory such that there are two evenly sized segments. One contains “small 
pages” and the other contains “large pages”. In our physical memory model, pages are organised contiguously 
as follows, with small pages on top at smaller addresses and large pages at higher addresses: 
 

PHYSICAL MEMORY 

Page Type Segment Size 

Small Page 

2 KiB Total ... 

Small Page 

 
Large Page 

 

2 KiB Total … 

 
Large Page 

 

 
 
Considering only the physical memory model, answer the following questions:  
 

1. Morgan wants a small page to have a size of 256B. How many small pages fit in the small page 
segment? 
 
_______________ Small Pages 
 

2. Morgan wishes to have a total of 4 large pages in her large page segment. How big must a large page 
be to have 4 of them in total? 
 
_______________ Bytes per Large Page 
 

  

26 



 
Because her scheme has variable page sizes (and variable offsets), Morgan realises she’ll have to be creative 
about how she finds the VPN and offset of a given virtual address. She proposes numbering pages within their 
“small” or “large” segment, as shown below. Note that page numbers are not unique.  
 
To decide how to break down the address, Morgan refers to the topmost virtual address bit: small-page 
addresses are 0 at this bit while large-page addresses are 1.  
 
 

VIRTUAL MEMORY 

Topmost bit value VPN value Page Type Segment 
Size 

0 0 Small Page 
4 KiB 
Total ... ... ... 

0 num_small - 1 Small Page 

1 0 
 

Large Page 
 

4 KiB 
Total ... ... … 

1 num_lrg - 1 
 

Large Page 
 

 
 
For the remainder of this problem, you may make the following assumptions which may differ from your 
calculated answers above:  
 

- 4 KiB of PM (2 KiB small segment, 2 KiB large segment) with 16 small pages, 8 large pages 
- 8 KiB of VM (4 KiB small segment, 4 KiB large segment) 
- sizeof(small segment) == sizeof(large segment) 
- sizeof(large page in VM) == sizeof(large page in PM) 
- sizeof(small page in VM) == sizeof(small page in PM) 

  

27 



 
1. How many bits (at most) does it take to represent the VPN of a LARGE page? 

 
____________________  bits 
 
 

2. How many bits (at most) does it take to represent the VPN of a SMALL page? 
 
____________________  bits 
 
 

3. How many bits (at most) does it take to represent the PPN of a LARGE page? 
 
____________________ bits 
 
 

4. How many bits (at most) does it take to represent the PPN of a SMALL page? 
 
____________________ bits 
 
 

5. How many rows must our page table contain?  
 
____________________ rows 
 

 
  

28 



 
For each of the following accesses, find the topmost bit, PPN, and offset. Then, decide whether the address 
results in a TLB hit, page table hit, or page fault. Assume the accesses happen in order and that they modify the 
TLB, page table, and physical memory as they are executed. Assumptions from the previous portion still hold. 
You do not need to change/mark the TLB or page table for credit.  
 

Free Page List 

0x17 (small) 

0xC (large) 

 
 
*LRU = 1 → Replace me! I am the “least recently used” item :)* 

TLB 

Topmost bit VPN PPN LRU 

1 0x3 0x9 0 

0 0x1 0x2 1 

 
*Assume shown entries are valid, omitted entries are invalid, and that the page table is of proper size given the 
VM/PM specifications* 

Page Table 

Topmost bit VPN PPN 

0 0x1 0x2 

0 0x3 0x5 

0 0x6 0x4 

1 0x1 0x7 

1 0x3 0x0 

1 0x7 0x6 

 
 
 
 
 
 
 
 
  

29 



 
 
Please write your answers in HEX.  

Virtual Address Topmost bit PPN Offset Result of Access 

0b0000110000110    
Ⓐ TLB Hit 
Ⓑ Page Table Hit 
Ⓒ Page Fault 

0b1001110101010    
Ⓐ TLB Hit 
Ⓑ Page Table Hit 
Ⓒ Page Fault 

0b0000111101101    
Ⓐ TLB Hit 
Ⓑ Page Table Hit 
Ⓒ Page Fault 

 
 
 
 
 
 
 
Morgan simulates her virtual memory design and finds it takes 1000ns to fetch one small page from disk and 
5000ns to fetch one large page. It takes 100ns to do a single memory access. On a set of benchmarks, she 
also find programs experience page faults 10% of the time with 6% occurring on small pages and 4% occurring 
on large pages. 
 
Assuming the page table fits completely in one large page (and that the table is loaded before the program 
runs, but memory is otherwise cold), what is the average time taken to complete a memory access in this 
scheme?  
 
Assume nothing is cached, that we do not have a TLB, and that updates to the page table require a separate 
memory access. 
 
 
 
 
 
 
 
 
 
 
 
__________ ns 

30 


