
Want to go back to the demo homescreen? Click here

note @432 168 views

Updated 27 days ago by

[Exams] Past Exams 2018 Q&A
Discuss all questions pertaining to exams which took place in 2018 here.

You can find the past exams here: https://cs61c.org/resources/exams

When posting questions, you MUST reference the semester, exam, AND question so we can help you.
Please put this at the beginning of your post in this format: [{Semester}-{Exam}]:Q{Question Number}
For example: [SP-MT1]:Q1, or [SU-MT2]:Q3

{Semester} is one of these: SP, SU, FA
{Exam} is of of these: Q, MT, MT1, MT2, F
Please separate out parts with periods: 1.2.ii.a.b.3.a

If you follow this format, it will make it very easy to search for similar questions!

midterm1 midterm2 final

~ An instructor () thinks this is a good note ~Jerry Xu

Stephan Kaminsky

followup discussions for lingering questions and comments

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

 2 months ago
[Spring-MT1]: Q3a
Why is song1 an address on the heap? Isn't song1 a pointer to memory on the heap, and isn't that pointer
stored on the stack? I thought *song1 would have been on the heap.

Xxxxxxx

 2 months ago The question is asking what kind of address does each variable evaluate
to. song1 is referring to the ptr to the memory you just allocated with malloc (heap). The ptr is just an
address and that address is the address starting point of what you just malloced. &song1 would be on
the stack. In this case, *song1 isn't an address, it's a struct.

Caroline Liu

 2 months ago
[Spring-MT1]:Q5dii
Why do we multiply by 17 here?

Xxxxxxx

https://cs61c.org/resources/exams

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 2 months ago The size of an instruction is defined as 17 bits in this question. So we need to
multiply it by 17 to get the maximum number of bits away from current pc.
Xxxxxxx

 2 months ago But why it is the 2^(n-1) -1 instead of 2^n -1Anonymous Scale

 2 months ago I got itAnonymous Scale

 2 months ago
[Spring-MT1]:Q6c
Why do we return sum in the function? I believe the values of a1 is 8, and a0 and a2 are both pointers by the
end of the execution of MAGIC. Shouldn't we be returning a pointer instead?

Xxxxxxx

 2 months ago In the second to last line we do mv a0 s0 which stores the sum we've been
calculating in the return register a0. Then we jr ra which returns to main. This corresponds to returning
sum from the magic C function.

Caroline Liu

 2 months ago
[Summer-MT1]:Q2.7

Why is it possibly legal? I thought because we only copied 'h' and 'i' and not the null pointer, we cannot legally
compute the strlen(x) since it only stops when it reaches a null terminator?

Anonymous Comp

 2 months ago I meant Q2.6Anonymous Comp

 2 months ago +1.

My understanding is that msg is "hi\0" and that when the call

strncpy(x,msg,strlen(msg));

is made, strlen(msg) is equal to 2. Therefore x would be equal to "hi" (no null terminator). I looked into
what strlen(x) would result in in such a case, and it said that it would keep searching until it hit a null
terminator or there was an error. Therefore I guess it is possibly legal as the space strlen is referencing
is allocated but depending on the value in x[2]? Not 100% sure

Anonymous Atom

 2 months ago
[Summer-MT1]:Q5.1(second)
Anonymous Gear

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

Why the largest number of registers that can now be supported in hardware in 64? I don't quit understand the
explanation in the solution.

 2 months ago nvm I understandAnonymous Gear

 2 months ago
[SP-MT1]:Q2.b

I noticed that the solution did not initialize "curr->next = NULL;" in the 2nd if block. Can we assume this to
have been done automatically when curr was initialized? If not, wouldn't this be a problem if find_end is called,
given the implementation in Q2.a?

Xxxxxxx

 2 months agoAnonymous Scale

 2 months ago

I do not understand why these two instruction are equal?Thanks.

Anonymous Scale

 2 months ago I believe they are not equal.
andi t2, t1, 1 is only i & 1
ptr[i] = i & 1 is sw t2, 0(t3)

Anonymous Gear

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 1

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 2 months ago Anonymous Gear is right.

andi t2 t1 1 --> t2 = t1 & 1
slli t3 t1 2 + add t3 t3 t4 --> t3 is now the address of ptr[i]
sw t2 0(t3) --> t3 = ptr[i] = t2 = t1 & 1 = i & 1

Xxxxxxx

 2 months ago
Rendering markdown...
Anonymous Poet

 2 months ago
Rendering markdown...
Anonymous Poet

 2 months ago
[Fa-quest]:
Q3.a: backup is a variable created in function, it should be stack, *backup should be in heap, why solution
shows the heap?

Q3b backup[1] is G, why?
backup = copy,
when copyH increrase and copy is modifies, backup should be modified as well, right?

Anonymous Scale

 1 month ago Which question are you talking about? (Also sorry about the late reply!)Caroline Liu

 2 months ago
[SU18]: Clarification

For Question 4, I saw that the function was void, so I assumed it didn't return anything. I see from the solutions
that it returns a pointer. What does a function returning void mean then?

Anonymous Atom

 2 months ago [SU-MT1]:Q4
The function actually says void *user_malloc (size_t n) , so it will return a void pointer, which is
just a generic pointer that can point to any data type.

Xxxxxxx

 2 months ago Thank you!Anonymous Atom

 1 month agoAnonymous Helix

Resolved Unresolved

helpful! 0

helpful! 0

[SU-18] Q5
I am confused by the answers, what does FwdOutA and FwdOutB do in the datapath here?

 1 month ago They refer to the output from the pipeline registers.Xxxxxxx

 1 month ago
[SP-18] 4A according to the explanation below, shouldn't the D stage for both beq and xor come after the
stalling? Because I thought beq instruction decode stage cannot happen until andi instruction writes back.

Xxxxxxx

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 1 month ago beq enters decode stage at c4 but it has no effect on the result since only andi
takes control of execute stage. It stalls until c7 after andi finishes writeback stage.
Xxxxxxx

 1 month ago
[SP-18] 5aiii I thought if we run this program with a fully associative cache, there will be a point where the
cache is full so there should be capacity misses as well.

Xxxxxxx

 1 month ago But for this question aren't we talking about direct mapped cache? Only one
block is used and we keep replacing it with new data. There's no capacity miss.
Xxxxxxx

 1 month ago
[SU-18] 5.2B I am wondering how to solve this type of problem in general. I am not sure where this came from
(block size of L2).

Anonymous Comp

 1 month ago We only access L2 if there's a L1 miss. From the L2 hit rate we know that there's
a miss every 4 accesses of L2. Therefore, every time L2 loads in a new block, it will contain
consecutive data that L1 can load in 4 times before there's a L1 miss. So a L2 block is basically 4
times as large as a L1 block, in this case 4Y bytes.

Xxxxxxx

 1 month ago ah okay thank you!Anonymous Comp

 1 month ago
[SP-MT2]:Q12.f

Why is it 3=4<1=2? Don't really know where to begin on this one.

Xxxxxxx

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 1 month ago resolved in OHDaniel Fan

 1 month ago @Daniel I thought so too, but we hastily assumed that 4096 bytes = 4096
ints, but it’s only 1024 ints. There would actually be 4-5 TLB evictions for T=1, depending on whether
or not main memory is page aligned, and it gets hideously complicated after that for other values of T,
as another TA and I found out later yesterday. Please resolve!

Xxxxxxx

 1 month ago Ah, I see, MB LOL. 4096 ints are indeed different than 4096 bytes. I just
looked at the problem again and this is my reasoning for the answer.

First of all, the cache is completely irrelevant for all 4 values of T as in every case the first loop will load
all the values into the cache, meaning there will never be a miss in the second loop. Thus, the only
difference in execution time will be due to TLB hits and misses.

For T = 1, the TLB miss/hit pattern will be: miss at start of loop as i = 5 * 1024 * 1024 which is a
multiple of 4096, meaning we are loading a new page into the TLB. It will then continue to have TLB
hits until i = 5 * 1024 * 1024 + 1024 when a new page will be loaded into the TLB. So the overall
pattern will be 1 TLB miss every 1024 accesses until the end of the loop.

For T = 2, the TLB miss/hit pattern is almost identical. Instead of only missing on i = 5 * 1024 * 1024, it
will also miss on i = 5 * 1024 * 1024 + 1 as this is 4 pages away from the previous access. Because it
is % 2, the rest of the 1022 accesses will stay on these two pages and so we'll continue to have TLB
hits until i = 5 * 1024 * 1024 + 1024 like before. So the overall pattern is 2 TLB misses every 1024
accesses.

For T = 3 and 4, due to the TLB evicting previous entries every on every access, the TLB will never hit.
So both of them will have only TLB misses.

So that is why 3 = 4 < 1 and 3 = 4 < 2. I'm guessing that because of the wording "likewise, you could
write 8=2 if 8 is about as fast as 2" (keyword:"about as fast"), they then write 1 = 2 as they only differ
by 1 TLB miss every 1024 accesses.

Sorry for the mouthful and late response—I just saw this lol.

Daniel Fan

 1 month ago
Rendering markdown...
Xxxxxxx

 1 month ago If we had the traditional IF, ID, EX, MEM, WB pipeline, I believe we
would need to stall for 2 cycles since we would need to wait until after EX to start our next IF. However,
since IF and ID are combined into 1 phase (IFD), that is why we only need to stall for 1 cycle.

Anonymous Mouse

 1 month ago
[SU-MT2]:Q2
Anonymous Beaker

my answer : rule2: D.!S.!N

why is my answer not correct ?

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 1 month ago

parenthesis pb

Anonymous Beaker

 1 month ago
SU18, can someone please explain 5.2A. I don't understand why it's 16B and not 128B.
Xxxxxxx

 1 month ago The way I thought about it is that we want to hit 7 out of every 8
accesses to arr[i]. This means that we want to only have that initial compulsory miss every 8 iterations,
bring in that whole block, and then hit the next 7 within that block. This means we need 8 uint16_t's
per block. A uint16 is composed of 16 bits, so 2 bytes. Therefore, if we want to fit 8 uint16_t's in a
block, we need to do 8 * 2 = 16B per block.

Anonymous Mouse

 1 month ago
SU18 4.1a, why does line 9 cause a stall for line 5?

5. L2: bge t1 a0 End
.
.
.
9. addi t1 t1 4
10. j L2

Since this question is referring to a 3 stage pipeline, shouldn't t1 be safe by the time we loop back to it?

Xxxxxxx

 1 month ago I think it's because we can't read and write to the same register in
the same cycle. So, you cannot write to t1 in line 9 and read from t1 in line 5 in the same clock cycle,
meaning you can't have the MWB and IFD stages line up.

Anonymous Mouse

 1 month ago [SU-Final]:Q6.3

How do you determine whether or not to cache a block with the no write allocate policy? Why is it that C is
never cached if it is being accessed every iteration of the inner for-loop?

Anonymous Calc

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 2

helpful! 0

helpful! 1

helpful! 0

 1 month ago No write allocate policy means after we request the address to cache, if we get a
write miss, we directly find the data in memory then write to memory, so we never brought in the
cache block containing the data that C accessed

Jenny

 1 month ago [SU-Final]:Q11.9

Why does the PPN of the page table entry corresponding to VPN 0x2 change, and why does the entry
corresponding to VPN 0x1 change at all?

Anonymous Calc

 1 month ago The 4 physical pages are all being mapped in the initial page table because there
are 4 valid entries in the page table. With memory request 0x2F4, the VPN is 0x2, but the page table
entry is invalid, meaning there is no mapping exists for that VPN in the current page table, so a page
fault occurs. Therefore, we need to evict a page from physical memory to disk and use that page as a
free page for Virtual page 0x2, and invalidate the previous entry from the page table. Because the
question says: assume we evict from main memory and the TLB by evicting the smallest VPN.
Therefore, we evict the physical page that's mapped by VPN 0x01, which is 0x2 and assign that to the
virtual page 0x2.

Jenny

 1 month ago
[SP-FINAL]
I understand how they get the VPN, but does anyone understand how they get the PPN from the VPN? I don't
get how to use the given page table.

Anonymous Mouse

 1 month ago Let's walk through the process:
virtual address = 0b0001 0000 → VPN = 0001
TLB empty, so go straight to page table
L1 index: 00
Entry with index 0: data at address 0x00
M[0x00] = 0x20, so L2 table starts there
L2 index: 01

Jenny

Resolved Unresolved

Resolved Unresolved

helpful! 1

helpful! 0

Entry with index 1: data at address 0x24
M[0x24] = 0x12 → PPN

VA to PA: 0x10 to 0x120
Add entry entry to TLB: 0x1 → 0x12

 1 month ago
[SU-F]:Q5 For part I, i understand that we want to check rd == rs1 for FwdOutA and rd == rs2 for FwdOutB, but
don't we want to check that the rd for the instruction at the MWB stage is equal to either rs1 or rs2 for the
instruction at the X stage? If so, how can we know that indexing into inst[11:7] will retrieve the rd of the
instruction at the MWB stage and indexing into inst[19:15] will retrieve the rs1 for the instruction at the X stage?

Anonymous Comp 2

 1 month ago
[SU-MT2]:Q4 - 2)b
Anonymous Beaker

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

AF = 32 cycles
I don't understand why the correction says 33 cycles. Did I miss something ?

 28 days ago Hey Antoine, if you're still stuck on this, check out the gsheet I made
here:
https://docs.google.com/spreadsheets/d/1Vtyf3Rg1CbfAyk8YvnIkZu3lCQBHzo89IRhEHVk5hx4/edit?
usp=sharing. On it I also included a quicker (but perhaps less safe) solution that doesn't require
drawing out the entire datapath. I also got 32 cycles originally, because I missed a stall somewhere lol.
Looks like you missed an instruction (either the j or the addi) in the last couple of lines.

Cynthia Zhong

 1 month ago
[SU-MT2] Q5.3: Why can we use AMAT to calculate the number of cycles spent accessing memory? My
understanding was that the time spent accessing memory was 2048 (num accesses) * 1/8 (L1 miss rate) * 1/4
(L2 miss rate) = 3 * 2^11?

Anonymous Comp 2

 27 days ago AMAT is Average Memory Access Time. The total comes from multiplying the
average time per access (AMAT) by the total number of accesses (2048).

Time spent accessing memory includes (somewhat unintuitively) the time spent missing in the cache
and triggering a memory access. AMAT accounts for these cycles.

Max Litster

 29 days ago
[Su-Final] #6: I'm a little confused as to how the hit rate for B is 27/32 . I thought we would miss B every four
iterations of j, which would make it 3/4, just like C. I understand the logic for A and C, just stuck on B.

Anonymous Atom

https://docs.google.com/spreadsheets/d/1Vtyf3Rg1CbfAyk8YvnIkZu3lCQBHzo89IRhEHVk5hx4/edit?usp=sharing

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

 28 days ago I feel like since i = 1 - 3, B will miss twice per iteration, because 0-3 will
store in set 0, 4-7 store in set 1, 7-11 store in set 0 and 12-15 store in set 1. Thus, in per iteration, old
B's data will be only be evicted twice since C also store the data in the same way.

Anonymous Gear

 29 days ago
[Su-Final] #6 (2): The question states that execution is from left to right. Does this mean the access order is
"CAB" or "ABC"?

Anonymous Gear 2

 27 days ago First we read from A and B, and then the result is written to C. So the access
order is is ABC. We don't access C until we write to it.

We're not doing anything with the old value of C[j + i * N], just assigning a new value to that location.
So we don't go to the cache until we actually have to write that new value to C[j + i * N].

Max Litster

 28 days ago
[SU-Final] #11 [3-7]. I am a bit confused as how to approach this problem. None of the addresses listed seem
to match up with the page table, is there a certain order we have to look at the bits in?

Anonymous Scale 2

 28 days ago Notice the offset is 12 bits so VM address 0x7ABC has 0x7 as VPN,
0xABC as offset. Look for VPN in the TLB and PAGE TABLE you should be able to solve the problem.
Anonymous Atom 2

 28 days ago
[SP-Final] #12
part a) why is it fully associative?
part b) why is the block size 16Kib? Is a block the same size as a page?
part d e) why is it write back and write allocate? I thought we're directly writing to memory since the cache is
memory itself.

thx in advance!

Anonymous Poet 2

 27 days ago If we think of traditional caching, we have cache data caching main memory.
This question is asking about the same concept, just tweaked slightly: our "cache" is now memory,
and "memory" is now the disk. This is still caching, but from RAM -> Disk as opposed to Cache ->
RAM.

Let's consider Part B: Under the definition above, a block is the small piece of the disk that we pull
into our cache, RAM. It functions just like a cache block: if a certain page is accessed in memory, and
isn't found, we go to disk and pull it and the data around it (the page/frame) into memory. Therefore,
thinking of RAM as our "cache" we have a block size of 16KiB.

Part A: Why is it fully associative? When I pull a page from disk into RAM, I don't map it to any index
or set. Similarly, I only kick a page out of RAM when my cache is full, meaning that I only have

Max Litster

Resolved Unresolved

Resolved Unresolved

Resolved Unresolved

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

helpful! 0

capacity or compulsory misses. This is a feature of fully-associative caches.

With these factors in mind, let's think about Part C. While yes, we are writing directly to memory
because the cache is memory itself, but memory is not what's being cached here. What's stored in our
cache is data from disk. So therefore, we have a write-back cache because I don't write back to the
disk - the data I'm caching - until that block (or page in this case) is booted from the cache. The write-
allocate argument follows similarly.

Hope this helped! Let me know if you have any further questions.

 28 days ago
[SU-Final] #10.3
For option D, is because it does not optimized the code? Or is because the statement is false about false
sharing? Can I get a clarification about the answer?

Anonymous Atom 2

 27 days ago False sharing happens when there is a write and the block gets
invalidated. In this code, there is no writes and invalidation happening so there is no optimization.
Anonymous Helix

 27 days ago
SU-Final #10.1
For option D, how could this code work in this case? I think it is an infinite loop since t2 = old value +1 and t1 =
old value. The only case that is can be true is that t1 gets incremented meaning that it has gone through
amoswap but in that case it is also going through infinite loop.

Anonymous Helix

 27 days ago I think option D is true when the operations happen to occur in the
correct order, and t2 == t1 after the first iteration (therefore it will not enter the infinite loop).
Anonymous Helix 2

 27 days ago
[SP-MT2] Q1f: For IMM_20, why don't we have any assembly code to perform (offset & 0x100000) (which is
andi a5, a5, 0x100000 in assembly) after the srai a5, a1, 20 operation? Without this mask, bits 19 - 0 of a5
aren't guaranteed to be 0s, which means when we try to `or` those bits later on things won't work properly.

Anonymous Comp 2

