
CS 61C Number Representation
Spring 2023 Discussion 1

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and if false, correct the statement to make it true:

1.1 Depending on the context, the same sequence of bits may represent different things.

True. The same bits can be interpreted in many different ways with the exact same

bits! The bits can represent anything from an unsigned number to a signed number

or even, as we will cover later, a program. It is all dependent on its agreed upon

interpretation.

1.2 It is possible to get an overflow error in Two’s Complement when adding numbers

of opposite signs.

False. Overflow errors only occur when the correct result of the addition falls outside

the range of [−(2n−1), 2n−1 − 1]. Adding numbers of opposite signs will not result

in numbers outside of this range.

1.3 If you interpret a N bit Two’s complement number as an unsigned number, negative

numbers would be smaller than positive numbers.

False. In Two’s Complement, the MSB is always 1 for a negative number. This

means EVERY negative number in Two’s Complement, when converted to unsigned,

will be larger than the positive numbers.

1.4 If you interpret an N bit Bias notation number as an unsigned number (assume

there are negative numbers for the given bias), negative numbers would be smaller

than positive numbers.

True. In bias notation, we add a bias to the unsigned interpretation to create the

value. Regardless of where we ’shift’ the range of representable values, the negative

numbers, when converted to unsigned, will always stay smaller than the positive

numbers. This is unlike Two’s Complement (see description above).

1.5 We can represent fractions and decimals in our given number representation formats

(unsigned, biased, and Two’s Complement).

False. Our current representation formats has a major limitation; we can only

represent and do arithmetic with integers. To successfully represent fractional values



2 Number Representation

as well as numbers with extremely high magnitude beyond our current boundaries,

we need another representation format.

2 Unsigned Integers
2.1 If we have an n-digit unsigned numeral dn−1dn−2 . . . d0 in radix (or base) r, then

the value of that numeral is
∑n−1

i=0 ridi, which is just fancy notation to say that

instead of a 10’s or 100’s place we have an r’s or r2’s place. For the three radices

binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.

Let’s try this by hand.

(a) Convert the following numbers from their initial radix into the other two

common radices:

1. 0b10010011 = 147 = 0x93

2. 63 = 0b0011 1111 = 0x3F

3. 0b00100100 = 36 = 0x24

4. 0 = 0b0 = 0x0

5. 39 = 0b0010 0111 = 0x27

6. 437 = 0b0001 1011 0101 = 0x1B5

7. 0x0123 = 0b0000 0001 0010 0011 = 291

(b) Convert the following numbers from hex to binary:

1. 0xD3AD = 0b1101 0011 1010 1101 = 54189

2. 0xB33F = 0b1011 0011 0011 1111 = 45887

3. 0x7EC4 = 0b0111 1110 1100 0100 = 32452

2.2 Our preferred tool for writing large numbers is the IEC prefixing system, which is

similar to scientific notation but with powers of 2 rather than 10:

Ki (Kibi) = 210

Mi (Mebi) = 220

Gi (Gibi) = 230

Ti (Tebi) = 240

Pi (Pebi) = 250

Ei (Exbi) = 260

Zi (Zebi) = 270

Yi (Yobi) = 280

For example, we would write 281 as 2 ∗ 280 = 2 Yi.

(a) Write the following numbers using IEC prefixes:

• 216 = 64 Ki

• 234 = 16 Gi

• 227 = 128 Mi

• 261 = 2 Ei

• 243 = 8 Ti

• 247 = 128 Ti

• 236 = 64 Gi

• 259 = 512 Pi

(b) Write the following numbers as powers of 2:

• 2 Ki = 211

• 256 Pi = 258

• 512 Ki = 219

• 64 Gi = 236

• 16 Mi = 224

• 128 Ei = 267



Number Representation 3

3 Signed Integers
3.1 Unsigned binary numbers work for natural numbers, but many calculations use

negative numbers as well. To deal with this, a number of different schemes have

been used to represent signed numbers. Here are two common schemes:

Two’s Complement:

• We can write the value of an n-digit two’s complement number as
∑n−2

i=0 2idi −
2n−1dn−1.

• Negative numbers will have a 1 as their most significant bit (MSB). Plugging

in dn−1 = 1 to the formula above gets us
∑n−2

i=0 2idi − 2n−1.

• Meanwhile, positive numbers will have a 0 as their MSB. Plugging in dn−1 = 0

gets us
∑n−2

i=0 2idi, which is very similar to unsigned numbers.

• To negate a two’s complement number: flip all the bits and add 1.

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.

Biased Representation:

• The number line is shifted so that the smallest number we want to be repre-

sentable would be 0b0...0.

• To find out what the represented number is, read the representation as if it was

an unsigned number, then add the bias.

• We can shift to any arbitrary bias we want to suit our needs. To represent

(nearly) as much negative numbers as positive, a commonly-used bias for N

bits is –(2N−1 − 1).

For questions (a) through (c), assume an 8-bit integer and answer each one for the

case of an unsigned number, biased number with a bias of -127, and two’s complement

number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? What is the result of adding one to that number?

1. Unsigned? 255, 0

2. Biased? 128, -127

3. Two’s Complement? 127, -128

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned? 0b0000 0000, 0b0000 0001, not possible

2. Biased? 0b0111 1111, 0b1000 0000, 0b0111 1110

3. Two’s Complement? 0b0000 0000, 0b0000 0001, 0b1111 1111

(c) How would you represent 17 and -17?

1. Unsigned? 0b0001 0001, not possible

2. Biased? 0b1001 0000, 0b0110 1110



4 Number Representation

3. Two’s Complement? 0b0001 0001, 0b1110 1111

3.2 Prove that the two’s complement inversion trick is valid (i.e. that x and x+ 1 sum

to 0).

Note that for any x we have x+x = 0b1 . . . 1. Adding 0b1 to 0b1 . . . 1 will cause the

value to overflow, meaning that 0b1 . . . 1 + 0b1 = 0b0 = 0. Therefore, x+ x+ 1 = 0

A straightforward hand calculation shows that 0b1 . . . 1 + 0b1 = 0.

3.3 We now have three major radices (or bases) that allow us to represent numbers

using a finite amount of symbols: binary, decimal, hexadecimal. Why do we use

each of these radices, and why are each of them preferred over other bases in a given

context?

Decimal is the preferred radix for human hand calculations, likely related to the fact

that humans have 10 fingers.

Binary numerals are particularly useful for computers. Binary signals are less likely

to be garbled than higher radix signals, as there is more “distance” (voltage or

current) between valid signals (HIGH and LOW). Additionally, binary signals are

quite convenient to design circuits, as we’ll see later in the course.

Hexadecimal numbers are a convenient shorthand for displaying binary numbers,

owing to the fact that one hex digit corresponds exactly to four binary digits.

4 Arithmetic and Counting
4.1 Addition and subtraction of binary/hex numbers can be done in a similar fashion as

with decimal digits by working right to left and carrying over extra digits to the

next place. However, sometimes this may result in an overflow if the number of bits

can no longer represent the true sum. Overflow occurs if and only if two numbers

with the same sign are added and the result has the opposite sign.

(a) Compute the decimal result of the following arithmetic expressions involving

6-bit Two’s Complement numbers as they would be calculated on a computer.

Do any of these result in an overflow? Are all these operations possible?

1. 0b011001 − 0b000111

0b010010 = 18, No overflow.

2. 0b100011 + 0b111010

Adding together we get 0b1011101, however since we are working with

6-bit numbers we truncate the first digit to get 0b011101 = 29. Since we

added two negative numbers and ended up with a positive number, this

results in an overflow.

3. 0x3B + 0x06

Converting to binary, we get 0b111011 + 0b000110 = (after truncating

as the problem states we’re working with 6-bit numbers) 0b000001 = 1.



Number Representation 5

Despite the extra truncated bit, this is not an overflow as -5 + 6 indeed

equals 1!

4. 0xFF − 0xAA

Trick question! This is not possible, as these hex numbers would need 8

bits to represent and we are working with 6 bit numbers.

5. 0b000100 − 0b001000

The 2’s complement of 0b001000 is 0b110111 + 1 = 0b111000. We add

that to 0b000100 to get 0b111100.

We can logically fact check this by converting everything to decimals:

0b000100 is 4 and 0b001000 is 8, so the subtraction should result in -4,

which is 0b111100.

(b) What is the least number of bits needed to represent the following ranges using

any number representation scheme?

1. 0 to 256

In general n bits can be used to represent at most 2n distinct things. As

such 8 bits can represent 28 = 256 numbers. However, this range actually

contains 257 numbers so we need 9 bits.

2. -7 to 56

Range of 64 numbers which can be represented through 6 bits as 26 = 64

3. 64 to 127 and -64 to -127

We are representing 128 numbers in total which requires 7 bits.

4. Address every byte of a 12 TiB chunk of memory

Since a TiB is 240 and the factor of 12 needs 4 bits, in total we can represent

using 44 bits as 243 bytes < 12 TiB < 244 bytes

(c) How many distinct numbers can the following schemes represent? How many

distinct positive numbers?

1. 10-bit unsigned 1024, 1023

In unsigned representation, different bit-strings correspond to different

numbers, so 10 bits can represent 210 = 1024 distinct numbers. Out of

all of these, only the number 0 is non-positive, so we can represent 1023

distinct positive numbers.

2. 8-bit Two’s Complement 256, 127

Like unsigned, different bit-strings correspond to distinct numbers in Two’s

Complement, so 8 bits can represent 28 = 256 numbers. Out of these,

half of them have a MSB of 1, which are negative numbers, and one is

the number zero, so we can represent 256/2 − 1 = 127 distinct positive

numbers.



6 Number Representation

3. 8-bit One’s Complement 255, 127

Recall that One’s Complement represents negative numbers by flipping

the bits of its positive representation (which must have leading zeros).

This produces unique values except for one case, with 0b0...0 and 0b1...1

corresponding to 0 and -0. Thus, One’s Complement can only represent

28 − 1 = 255 distinct numbers. As all positive numbers must have a

leading zero, our largest positive value would be 0b01...1, so we would have

27 − 1 = 127 distinct positive numbers.

4. 6-bit biased, with a bias of -30 64, 33

Also like unsigned, in biased notation, no two different bit-strings correspond

to the same number, so 6 bits can represent 26 = 64 numbers. With this

bias, the largest number we can represent is 0b111111= 63− 30 = 33, and

the smallest is -30, so there are 33 distinct positive numbers (1 ∼ 33).

5. 10-bit sign-magnitude 1023, 511

Two different bit-strings (0b0000000000 and 0b1000000000) correspond to

the same number zero, so we can represent only 210−1 = 1023 distinct num-

bers. Out of these, every bit-string with a MSB of 0, except 0b0000000000,

correspond to a different positive number, so we can represent 29 − 1 = 511

distinct positive numbers.


	Pre-Check
	Unsigned Integers
	Signed Integers
	Arithmetic and Counting

