
CS 61C RISC-V Assembly, Functions
Spring 2023 Discussion 4

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

1.2 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.3 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

False. jalr is used to return to the memory address specified in the second argument.

Keep in mind that jal jumps to a label (which is translated into an immediate by

the assembler), whereas jalr jumps to an address stored in a register, which is set

at runtime. Related, j label is a pseudo-instruction for jal x0, label (they do

the same thing).

1.4 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,

so the function can set their values to the its return values before returning.

1.5 In order to use the saved registers (s0-s11) in a function, we must store their values

before using them and restore their values before returning.

True. The saved registers are callee-saved, so we must save and restore them at the

beginning and end of functions. This is frequently done in organized blocks of code

called the ”function prologue” and ”function epilogue”.

1.6 The stack should only be manipulated at the beginning and end of functions, where

the callee saved registers are temporarily saved.



2 RISC-V Assembly, Functions

False. While it is a good idea to create a separate ’prologue’ and ’epilogue’ to save

callee registers onto the stack, the stack is mutable anywhere in the function. A

good example is if you want to preserve the current value of a temporary register,

you can decrement the sp to save the register onto the stack right before a function

call.



RISC-V Assembly, Functions 3

2 Arrays in RISC-V
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

}

2.1 lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

Sets arr[1] to arr[0] + arr[2].

2.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

2.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

Negates all elements in arr.



4 RISC-V Assembly, Functions

3 Memory Access
Using the given instructions and the sample memory arrays provided, what will

happen when the RISC-V code is executed? For load instructions (lw, lb, lh

), write out what each register will store. For store instructions (sw, sh, sb),

update the memory array accordingly. Recall that RISC-V is little-endian and byte

addressable.

3.1 li x5 0x00FF0000

lw x6 0(x5)

addi x5 x5 4

lh x7 2(x5)

lw x8 0(x6)

lb x9 3(x7)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

x5 will hold 0x00FF0004, adding 4 to the initial address. x6 will hold 36, loading the

word from the address 0x00FF0000. x7 will hold 0xC, loading the upper half of the

address 0x00FF0004. x8 will hold the word at 36 = 0x24, so 0xDEADB33F. Finally,

x9 will hold 0xFFFFFFC5, taking the most significant byte and sign-extending it.

3.2 li x5 0xABADCAFE

li x6 0xF9120504

li x7 0xBEEFCACE

sw x5 0(x6)

addi x6 x6 4

addi x5 x5 4

sh x6 2(x5)

sb x7 1(x7)

sb x7 3(x6)

sb x7 3(x5)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.



RISC-V Assembly, Functions 5

0xCE000000

0xABADCAFE

0x0000CE00

0xCE080000

0x00000000

0xFFFFFFFF

0xF9120508

0xF9120504
0xBEEFCAD2
0xBEEFCACE

0xABADCB02
0xABADCAFE

0x00000004
0x00000000

4 Calling Convention Practice
4.1 In a function called myfunc, we want to call two functions called generate random

and reverse.

myfunc takes in 3 arguments: a0, a1, a2

generate random takes in no arguments and returns a random integer to a0.

reverse takes in 4 arguments: a0, a1, a2, a3 and doesn’t return anything.

1 myfunc:

2 # Prologue (omitted)

3

4 # assign registers to hold arguments to myfunc

5 addi t0 a0 0

6 addi s0 a1 0

7 addi a7 a2 0

8

9 jal generate_random

10

11 # store and process return value

12 addi t1 a0 0

13 slli t5 t1 2

14

15 # setup arguments for reverse

16 add a0 t0 x0

17 add a1 s0 x0

18 add a2 t5 x0

19 addi a3 t1 0

20

21 jal reverse

22

23 # additional computations



6 RISC-V Assembly, Functions

24 add t0 s0 x0

25 add t1 t1 a7

26 add s9 s8 s7

27 add s3 x0 t5

28

29 # Epilogue (omitted)

30 ret

4.1 Which registers, if any, need to be saved on the stack in the prologue?

s0, s3, s9, ra We must save all s-registers we modify, and it is conventional to store

ra in the prologue (rather than just before calling a function) when the function

contains a function call.

4.2 Which registers do we need to save on the stack before calling generate random?

t0, a7

Under calling conventions, all the t-registers and a-registers may be changed by

generate random, so we must store all of these which we need to know the value of

after the call. t0 is used on line 16 and a7 is used on line 25. Note that while t1 and

t5 are used later, we don’t care about its value before calling generate random (they

are set after the call, on lines 12-13), so we don’t need to store them.

4.3 Which registers do we need to save on the stack before calling reverse?

t1, t5, a7

As before, we must save t-registers and a-registers we need to read later.

4.4 Which registers need to be recovered in the epilogue before returning?

s0, s3, s9, ra

This mirrors what we saved in the prologue.


	Pre-Check
	Arrays in RISC-V
	Memory Access
	Calling Convention Practice

