CS 610 CALL, Boolean Alge]ora
Spring 2023 Discussion 9

1 Pre—Check

This section is designed as a conceptual check for you to determine if you conceptually
understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

The compiler may output pseudoinstructions.

The main job of the assembler is to generate optimized machine code.

The object files produced by the assembler are only moved, not edited, by the linker.

The destination of all jump instructions is completely determined after linking.

2 Translation

In this question, we will be translating between RISC-V code and binary/hexadecimal

values.
Translate the following Risc-V instructions into binary and hexadecimal notations

addi s1 x0 -24 = ob = 0x
sh s1 4(t1) ob = 0x

In this question, we will be translating between RISC-V code and binary/hexadecimal

values.
Translate the following hexadecimal values into the relevant RISC-V instruction.

0x234554B7
OxFEQ50CE3

2 CALL, Boolean Algebra

3 RISC-V Addressing

We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create
a data memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the
instruction (multiplied by 2) to create an instruction address (used by branch

and jump instructions).

3. Register Addressing uses the value in a register as an instruction address. For
instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

What is the range of 32-bit instructions that can be reached from the current PC
using a branch instruction? Recall that RISC-V supports 16b instructions via an

extension.

What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

Given the following RISC-V code (and instruction addresses), fill in the blank fields
for the following instructions (you’ll need your RISC-V reference sheet!). Each field

refers to a different block of the instruction encoding.

0x002cff00: loop: add t1, t2, t@ | | | |

0x002cffo4: jal ra, foo | |

0x002cff08: bne t1, zero, loop | | | |

0x002cff2c: foo: jr ra ra

0x33

| __0x6F__|

0x63

CALL, Boolean Algebra 3

4 CALL

The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

[Source files: foo.c j

C Preprocessor

‘&

[Intermediate files: foo.i, foo. ii]

ah

[Assembly files: foo.s J

Assembler

‘@

[Object files: foo.o J

[Execeutable files: foo.out J

Loader (OS)

[Memory j

How many passes through the code does the Assembler have to make? Why?

Which step in CALL resolves relative addressing? Absolute addressing?

Describe the six main parts of the object files outputted by the Assembler (Header,
Text, Data, Relocation Table, Symbol Table, Debugging Information).

4 CALL, Boolean Algebra

5 Boolean Logic

In digital electronics, it is often important to get certain outputs based on your
inputs, as laid out by a truth table. Truth tables map directly to Boolean expressions,
and Boolean expressions map directly to logic gates. However, in order to minimize
the number of logic gates needed to implement a circuit, it is often useful to simplify
long Boolean expressions.

We can simplify expressions using the nine key laws of Boolean algebra:

Name H AND Form ‘ OR form
Commutative AB = BA A+B=B+A
Associative AB(C) = A(BC) A+B+C)=A+B)+C
Identity 1A =A 0+A=A
Null 0A =0 1+A=1
Absorption A(A+B)=A A+AB=A
Distributive || (A + B)(A + C) = A + BC AB + C) = AB + AC
Idempotent A(A)=A A+A=A
Inverse AA) =0 A+A=1
De Morgan’s AB=A+B A +B=A(B)

Simplify the following Boolean expressions:
(a) (A+ B)(A+ B)C

(b) ABC + ABC + ABC + ABC + ABC + ABC

(c) A(BC + BO)

(d) A(A+B)+ (B+ AA)(A+ B)

CALL, Boolean Algebra 5

Use multiple iterations of De Morgan’s laws to prove the identity A + AB = A + B.

Prove that De Morgan’s law can be generalized for the complement of any number
of terms.

Arithmetic

Memory

CS 61C Reference Card

Version 1.6.0
Instruction Name Description Type | Opcode Funct3 | Funct7
add rd rsl rs2 |ADD rd = rsl + rs2 R (011 0011 |000 |000 0000
sub rd rsl rs2 |SUBtract rd = rsl - rs2 R (011 0011 |000 |010 0000
and rd rsl rs2 bitwise AND rd = rsl & rs2 R |011 0011 |111 |000 0000
or rd rsl rs2 bitwise OR rd = rsl | rs2 R |011 0011 [110 |000 0000
xor rd rsl rs2 bitwise XOR rd = rsl ~ rs2 R |011 0011 |100 [000 0000
sll rd rsl rs2 | Shift Left Logical rd = rsl << rs2 R (011 0011 |001 |000 0000
srl rd rsl rs2 Shift Right Logical |rd = rsl >> rs2 (Zero-extend) | R /011 0011 101 (000 0000
sra rd rsl rs2 | Shift Right Arithmetic rd = rs1l >> rs2 (Sign-extend) | R /011 0011 101 (010 0000
slt rd rsl rs2 Set Less Than rd = (rsl < rs2) 21 :0 R |011 0011 |010 |000 0000
(signed)
sltu rd rsl rs2 Set Less Than R |011 0011 011 [000 0000
(Unsigned)
addi rd rsl imm |ADD Immediate rd = rsl + imm | /001 0011|000
andi rd rsl imm | bitwise AND rd = rsl & imm | /001 0011 |111
Immediate
ori rd rsl imm bitwise OR rd = rsl | imm | |001 0011|110
Immediate
xori rd rsl imm |bitwise XOR rd = rsl *~ imm | 1001 0011 |100
Immediate
s1lli rd rsl imm |Shift Left Logical rd = rsl << imm [* /001 0011 001 [000 0000
Immediate
srli rd rsl imm | Shift Right Logical |rd = rsl >> imm (Zero-extend) | I* /001 0011 101 (000 0000
Immediate
srai rd rsl imm |Shift Right Arithmetic| rd = rsl >> imm (Sign-extend) [* 1001 0011 101 |010 0000
Immediate
slti rd rsl imm Set Less Than rd = (rsl < imm) ? 1 : 0 | {001 0011 |010
Immediate (signed)
sltiu rd rsl imm |Setless Than | /001 0011 |011
Immediate
(Unsigned)
1b rd imm(rsl) |Load Byte rd = 1 byte of memory at address | /000 0011 000
rsl + imm, sign-extended
1lbu rd imm(rsl) |Load Byte rd = 1 byte of memory at address | /000 0011 100
(Unsigned) rsl + imm, zero-extended
1h rd imm(rsl) |Load Half-word rd = 2 bytes of memory startingat | | |000 0011 001
address rsl + imm, sign-extended
lhu rd imm(rsl) |Load Half-word rd = 2 bytes of memory startingat | | |000 0011 |101
(Unsigned) address rs1 + imm, zero-extended
1w rd imm(rsl) | Load Word rd = 4 bytes of memory startingat | | (000 0011 010
address rs1 + imm
sb rs2 imm(rsl) |Store Byte Stores least-significant byte of rs2 atf S |010 0011 000
the address rs1l + immin memory
sh rs2 imm(rsl) Store Half-word Stores the 2 least-significant bytes of| S |010 0011 001

rs2 starting at the address rsl1 +
imm in memory

sw rs2 imm(rsl) Store Word Stores rs2 starting at the address S (010 0011 010
rsl + immin memory

Instruction Name Description Type | Opcode Funct3
beq rsl rs2 label |Branch if EQual if (rsl == rs2) B /110 0011 |000
PC = PC + offset
bge rsl rs2 label |Branch if Greater or Equal (signed) if (rsl >= rs2) B (110 0011 |101
bgeu rsl rs2 label Branch if Greater or Equal (Unsigned) |[EC = PC + offset B /110 0011 |111
__|blt rsl rs2 label |Branch if Less Than (signed) if (rsl < rs2) B (110 0011 |100
o -
£ |bltu rsl rs2 label Branch if Less Than (Unsigned) PC = PC + offset B 1110 0011 110
8 bne rsl rs2 label |Branch if Not Equal if (rsl '= rs2) B 1110 0011 |001
PC = PC + offset
jal rd label Jump And Link rd = PC + 4 J 110 1111
PC = PC + offset
jalr rd rsl imm Jump And Link Register rd = PC + 4 | /110 0111 (000
PC = rsl + imm
auipc rd imm Add Upper Immediate to PC rd = PC + (imm << 12) | U [001 0111
lui rd imm Load Upper Immediate rd = imm << 12 U 011 0111
E ebreak Environment BREAK Asks the debugger to do | 1111 0011 (000
e} something (imm = 0)
ecall Environment CALL Asks the OS to do | 1111 0011 (000
something (imm = 1)
5 mul rd rsl rs2 MULtiply (part of mul ISA extension) rd = rsl * rs2 (omitted)
Name | Description # Name | Desc Pseudoinstruction |Name Description Translation
x0 |zero ConstantO |x16 a6 |ArGS | |peqz rsl label |Branch if if (rsl == 0) beq rsl x0 label
x1 |ra |Return x17 |a7 EQuals Zero PC = PC + offset
Address bnez rsl label BranchifNot [if (rsl != 0) bne rsl x0 label
x2 |sp |Stack x18 |s2 Equals Zero PC = PC + offset
Pointer j label Jump PC = PC + offset|jal x0 label
x3 |gp SlObal x19 |s3 jr rsl Jump Register |PC = rsl1 jalr x0 rsl 0
ointer
la rd label Load absolute |rd = &label auipc, addi
x4 |tp Thread x20 |s4 Address
Pointer & X :
) 1i rd imm Load Immediate | rd = imm lui (if needed), addi
x5 |80 x21|s5 | 5 d rs1 MoVs d 1 ddi rd rsl 0
mv I rs ove r = Irs al R o rs
x6 |e1 |[omPor@Y [Loos6 | o
Registers o neg rd rsl NEGate rd = -rsl sub rd x0 rsl
x7 |t2 x23 |s7 Q - -
© nop No OPeration |do nothing addi x0 x0 O
x8 |sO Saved x24 |s8 w —
. not rd rsl bitwise NOT rd = ~rsl xori rd rsl -1
x9 |s1 |Registers |x25 |s9
ret RETurn PC = ra jalr x0 x1 0
x10 |a0 Function x26 |sl10
%11 |al Arguments <27 |s11 31 25 24 20 19 15 14 12 11 7 6 0
or Return R funct7 rs2 rs1 funct3 rd opcode
Values ,
I imm[11:0] rs1 funct3 rd opcode
x12 |a2 x28 |[t3 &
x13 (a3 |fFunction |x29 |t4 8 I funct7 imm[4:0] rs1 funct3 rd opcode
x14 |aa |Arguments |x30 t5 é S imm([11:5] rs2 rs1 funct3 | imm[4:0] opcode
x15 |a5 x31 |t6 R B | imm[12|10:5] rs2 rs1 funct3 [imm[4:1|11]| opcode
Caller saved registers U imm[31:12] rd opcode
Callee saved registers (except x0, gp, tp) J imm[20|10:1|11|19:12] rd opcode

Immediates are sign-extended to 32 bits, except in I* type instructions and s1tiu.

