
CS 61C RISC-V Pipelining and Hazards
Spring 2023 Discussion 8

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 By pipelining the CPU datapath, each single instruction will execute faster (latency

is reduced), resulting in a speed-up in performance.

False. Because we implement registers between each stage of the datapath, the time

it takes for an instruction to finish execution through the 5 stages will be longer

than the single-cycle datapath we were first introduced with. A single instruction

will take multiple clock cycles to get through all the stages, with the clock cycle

based on the stage with the longest timing.

1.2 A pipelined CPU datapath results in instructions being executed with higher through-

put (than the single-cycle CPU).

True. Recall that throughput is the number of instructions processed per unit time.

Pipelining results in a higher throughput because more instructions are run at once,

which utilizes more parts of the datapath simultaneously.

1.3 Through adding additional hardware, we can implement two ’read’ ports as well

as a ’write’ port to the RegFile (where registers can be accessed). This solves the

hazard of two instructions reading and writing to the same register simultaneously.

False. The addition of independent ports to the RegFile allows for multiple instruc-

tions to access the RegFile at the same time (such as one instruction reading values

of two operands, while another instruction is writing to a return register). However,

this does not work if both instructions are reading and writing to the same register.

Some solutions to this data hazard could be to stall the latter instruction by 1 cycle

or to forward the read value from a previous instruction, bypassing the RegFile

completely.

1.4 All data hazards can be resolved with forwarding.

False. Hazards following lw cannot be fully resolved with forwarding because the

output is not known until after the MEM stage, making a stall necessary.

1.5 As stalling reduces performance significantly, we generally prefer other solutions to

fixing pipeline hazards, even at the cost of complexity or hardware. In a modern-day

pipelined CPU, are there still use-cases for stalling to resolve potential hazards? If

so, describe a program that would.

True. Say we have the RISC-V program where a0 is a pointer to an array of integers,

and we want to load a1 with the first element * 2:



2 RISC-V Pipelining and Hazards

lw t1 0(a0)

add t2 t1 t1

mv a1 t2

In this program, there are no other instructions to move into the load delay slot,

so we are forced to nop the next instruction and repeat it afterwards, essentially

stalling for one cycle. While we do have many tools and alternative solutions to

lessen possible performance loss, in some cases it is unavoidable.

2 Pipelining Registers
In order to pipeline, we separate the datapath into 5 discrete stages, each completing

a different function and accessing different resources on the way to executing an

entire instruction.

In the IF stage, we use the Program Counter to access our instruction as it is stored

in IMEM. Then, we separate the distinct parts we need from the instruction bits in

the ID stage and generate our immediate, the register values from the RegFile, and

other control signals. Afterwards, using these values and signals, we complete the

necessary ALU operations in the EX stage. Next, anything we do in regards with

DMEM (not to be confused with RegFile or IMEM) is done in the MEM stage,

before we hit the WB stage, where we write the computed value that we want back

into the return register in the RegFile.

These 5 stages, divided by registers as shown in the figure, allow the datapath

to provide a pipeline for multiple instructions to operate at the same time, each

accessing different resources. A pipelined datapath is provided for you on the last

page. Use it to answer the following questions.

2.1 What is the purpose of the new registers?

When we pipeline the datapath, the values from each stage need to be passed on at

each clock cycle. Each stage in the pipeline only operates on a small set of values,

but those values need to be correct with respect to the instruction that is currently

being processed. Say we use load word (lw) as an example: if it is in the EX stage,

then the EX stage should look like a snapshot of the single-cycle datapath. The

values on the rs1, rs2, immediate, and PC values should be as if lw was the only

instruction in the entire path. This also includes the control logic: the instruction is

passed in at each stage, the appropriate control signals are generated for the stage

of interest, and that stage can execute properly.

2.2 Looking at the way PC is passed through the datapath, there are two places where

+4 is added to the PC, once in the IF and MEM stage. Why do we add +4 to the

PC again in the memory stage?

We add +4 to the PC again in the memory stage so we don’t need to pass both

PC and PC+4 along the whole pipeline. This would use more registers, adding

unnecessary hardware. We also can’t just pass only PC+4 through the pipeline, as

we need the original PC value in operands like auipc.

2.3 Why do we need to save the instruction in a register multiple times?



RISC-V Pipelining and Hazards 3

We need to save the instruction in a register multiple times because each pipeline

stage needs to receive the right control signals for the instruction currently in that

stage.

3 Performance Analysis
Register clk-to-q 30 ps

Register setup 20 ps

Register hold 10 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Imm. Gen. 15 ps

Memory read 250 ps

Memory write 200 ps

RegFile read 100 ps

RegFile setup 20 ps

Given above are sample delays for each of the datapath components and register

timings. In the questions below, use these in conjunction with the pipelined datapath

on the last page to answer them.

3.1 What would be the fastest possible clock time for a single cycle datapath? Recall

from last week’s discussion that one instruction which exercises the critical path is

lw.

(HINT: tclk-cycle ≥ tclk-to-q + tlongest-combinational-path + tsetup)

tclk ≥ tPC clk-to-q + tIMEM read + tRF read + tmux + tALU + tDMEM read + tmux + tRF setup

≥ 30 + 250 + 100 + 25 + 200 + 250 + 25 + 20

≥ 900 ps

Note that the delay in the immediate generator as well as the branch comparator

are omitted because the immediate generator and branch comparison is done in

parallel with the RegFile read and ALU computation respectively, the latter two

taking much longer time.

3.2 What is the fastest possible clock time for a pipelined datapath?

IF : tPC clk-to-q + tIMEM read + tReg setup = 30 + 250 + 20 = 300 ps

ID : tReg clk-to-q + tRF read + tReg setup = 30 + 100 + 20 = 150 ps

EX : tReg clk-to-q + tmux + tALU + tReg setup = 30 + 25 + 200 + 20 = 275 ps

MEM : tReg clk-to-q + tDMEM read + tReg setup = 30 + 250 + 20 = 300 ps

WB : tReg clk-to-q + tmux + tRF setup = 30 + 25 + 20 = 75 ps

tclk ≥ max(IF, ID,EX,MEM,WB) = 300 ps

Again, the immediate generator and branch comparator delays are overshadowed by

the longer delays of RegFile read and ALU.



4 RISC-V Pipelining and Hazards

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5×?

900 ps
300 ps , or a 3 times speedup. The speedup is less than 5 because of (1) the necessity

of adding pipeline registers, which have clk-to-q and setup times, and (2) the need

to set the clock to the maximum of the five stages, which take different amounts of

time.

Note: Due to hazards, which require additional logic to resolve, the actual speedup

would likely be even less than 3 times.

4 Hazards
One of the costs of pipelining is that it introduces pipeline hazards. Hazards,

generally, are issues with something in the CPU’s instruction pipeline that could

cause the next instruction to execute incorrectly.

The 5-stage pipelined CPU introduces three types: structural hazards (hardware not

sufficient), data hazards (using wrong values in computation), and control hazards

(executing the wrong instruction).

Structural Hazards
Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. In the standard 5-stage pipeline, there aren’t

structural hazards, unless there are active changes to the pipeline. The structural

hazards that could exist are prevented by RV32I’s hardware requirements.

There are two main causes of structural hazards:

• Register File: The register file is accessed both during ID, when it is read to

decode the instruction, and the corresponding register values; and during WB,

when it is written to in the rd register. If the RegFile only had one port, then

it wouldn’t work since we have one instruction being decoded and another

writing back.

– We resolve this by having separate read and write ports. However, this

only works if the read/written registers are different.

– To account for reads and writes to the same register, processors usually

write to the register during the first half of the clock cycle, and read from

it during in the second half. This is an implementation of the idea of

double pumping, which is when data is transferred along data buses at

double the rate, by utilising both the rising and falling clock edges in a

clock cycle.

• Main Memory: Main memory is accessed for both instructions and data.

If memory could only support one read/write at a time, then instruction A

going through IF and attempting to fetch an instruction from memory cannot

happen at the same time as instruction B attempting to read (or write) to

data portions of memory.



RISC-V Pipelining and Hazards 5

– Having a separate instruction memory (abbreviated IMEM) and data

memory (abbreviated DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

Data Hazards
Data hazards are caused by data dependencies between instructions. In CS 61C,

where we always assume that instructions go through the processor in order, we see

data hazards when an instruction reads a register before a previous instruction has

finished writing to that register.

There are two types of data hazards:

• EX-ID: this hazard exists because the output from the execute stage is not

written back to the RegFile until the writeback stage, yet can be requested by

the subsequent instruction in the decode stage.

• MEM-ID: this hazard exists because the output from the memory access

stage is not written back to the RegFile until the writeback stage, but can be

requested from the decode stage, just as in EX-ID.

Solving Data Hazards
For all questions, assume no branch prediction or double-pumping (i.e. write-

then-read in one cycle for RegFile).

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.

4.1 Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

There are two data hazards, between instructions 1 and 2, and between instructions

1 and 3. The first could be resolved by forwarding the result of the EX stage in

C3 to the beginning of the EX stage in C4, and the second could be resolved by

forwarding the result of the MEM stage in C4 to the beginning of the EX stage in

C5.

4.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Three instructions. For example, with the addi instruction, any instruction that uses

t0 that has its ID stage in C3, C4, or C5 will not have the result of addi’s writeback

in C5. If, however, we are allowed to assume double-pumping (write-then-read to



6 RISC-V Pipelining and Hazards

registers), then it would only affect two instructions since the ID stage of instruction

4 would be allowed to line up with the WB stage of intruction 1. (Side note: how

is this implemented in hardware? We add 2 wires: one from the beginning of the

MEM stage for the output of the ALU and one from the beginning of the WB stage.

Both of these wires will connect to the A/B muxes in the EX stage.)

Stalls

4.3 Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

There are two data hazards in the code. The first hazard is between instructions

2 and 3, from t0, and the second is between instructions 3 and 4, from t1. The

hazard between instructions 2 and 3 can be resolved with forwarding, but the hazard

between instructions 3 and 4 cannot be resolved with forwarding. This is because

even with forwarding, instruction 4 needs the result of instruction 3 at the beginning

of C6, and it won’t be ready until the end of C6.

We can fix this by stalling: insert a nop (no-operation) between instructions 3 and 4.

4.4 Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

Detecting Data Hazards

Say we have the rs1, rs2, RegWEn, and rd signals for two instructions (instruction

n and instruction n+ 1) and we wish to determine if a data hazard exists across the

instructions. We can simply check to see if the rd for instruction n matches either

rs1 or rs2 of instruction n+ 1, indicating that such a hazard exists (why does this

make sense?).

We could then use our hazard detection to determine which forwarding paths/number

of stalls (if any) are necessary to take to ensure proper instruction execution. In

pseudo-code, part of this could look something like the following:

if (rs1(n + 1) == rd(n) && RegWen(n) == 1) {

set ASel for (n + 1) to forward ALU output from n

}

if (rs2(n + 1) == rd(n) && RegWen(n) == 1) {

set BSel for (n + 1) to forward ALU output from n

}



RISC-V Pipelining and Hazards 7

Control Hazards
Control hazards are caused by jump and branch instructions, because for all

jumps and some branches, the next PC is not PC + 4, but the result of the ALU

available after the EX stage. We could stall the pipeline for control hazards, but

this decreases performance.

4.5 Besides stalling, what can we do to resolve control hazards?

We can try to predict which way branches will go, and if this prediction is incorrect,

flush the pipeline and continue with the correct instruction. (The most naive

prediction method is to simply predict that branches are always not taken, which is

effectively the same as not having any branch prediction at all.)

Extra for Experience
4.6 Given the RISC-V code above and a pipelined CPU with no forwarding, how many

hazards would there be? What types are each hazard? Consider all possible hazards

between all instructions.

How many stalls would there need to be in order to fix the data hazard(s), if the

RegFile supports double-pumping (i.e. write-then-read)? What about the control

hazard(s), if we use branch prediction?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

2. or s0, t0, t1 IF ID EX MEM WB

3. sw s1, 100(s0) IF ID EX MEM WB

4. bgeu s0, s2, loop IF ID EX MEM WB

5. add t2, x0, x0 IF ID EX MEM WB

There are four hazards: between instructions 1 and 2 (data hazard from t1), instruc-

tions 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0), and instructions

4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two stalls are

needed between instructions 1 and 2 (WB→ID), and two stalls are needed between

instructions 2 and 3 (WB→ID). For the control hazard, if we predicted correctly,

then no stalls are needed, but if we predicted incorrectly, then we need 3 stalls

while flushing the pipeline (MEM→1 cycle before IF). We don’t need to stall for the

hazard between 2 and 4 because stalling for instruction 3 already handles that.



8 RISC-V Pipelining and Hazards


	Pre-Check
	Pipelining Registers
	Performance Analysis
	Hazards

