CS 61C Parallelism
Spring 2023 Discussion 9

1 Pre— Check

This section is designed as a conceptual check for you to determine if you conceptually
understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

SIMD is ideal for flow-control heavy tasks (i.e. tasks with many branches/if state-

ments).

False. Data-level parallelism really shines through when we need to repeatedly
perform the same operation on a large amount of data. Flow control statements
disrupt the continuous flow of computation, which makes programs with them hard
to take advantage of SIMD.

Intel’s SIMD intrinsic instructions invoke large registers available on the architecture

in order to perform one operation on multiple values at once.

True. For example, we can pack four 32-bit integers in a single 128-bit register
and perform the same arithmetic operation on all four integers in one go, using an
instruction such as __m128i _mm_add_epi32(__m128i a m128i b).

[—

The pipelined datapath is an example of parallelism because it performs different

stages of instructions in parallel.

True. While a pipelined datapath doesn’t execute multiple instructions at the same
time, it makes use of each part of the processor at the same time with different
instructions, implementing instruction-level parallelism. This can be contrasted with
data-level parallelism, which takes advantage of larger registers to do simultaneous
memory accesses, and thread-level parallelism, which forks into multiple parallel
threads and joins the tasks together.

The most effective way of increasing performance on a modern PC is to increase its
clock speed.

False. Modern clock speeds have almost reached their physical limits, and so there’s
not much room to improve our performance with faster clock speeds. To improve
performance, the current best way is to parallelize onto multiple cores (thread-level

parallelism).

In thread-level parallelism, the amount of speedup is directly proportional to the

increase in number of cores.

False, usually there is some overhead in parallelizing an operation. Additionally,
Amdahl’s Law shows that true speedup is affected not only by the number of threads

but also by the amount of code that cannot be sped up.

2 Parallelism

In thread-level parallelism, threads may run in any order and can start while other

threads are partway through their execution.

True. We must ensure that whichever order the threads execute in, the behavior of

the program is correct, which includes handling any potential data races.

2 Data-Level Parallelism

The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Source 1 ‘ X3 | X2 ‘ X1 | X0 ‘
Source 2 ‘ Y3 | Y2 Y1 | YO

@ @ @ @
Destination ‘ X3 0P Y3 | X2 0P Y2 ‘ X10P Y1 ’ X0 OP YO ‘

Some machines with x86 architectures have special, wider registers, that can hold
128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them
perform operations using 128-bit registers. The type __m128i is used when these
registers hold 4 ints, 8 shorts or 16 chars; __m128d is used for 2 double precision
floats, and __m128 is used for 4 single precision floats. Where you see “epiXX”, epi
stands for extended packed integer, and XX is the number of bits in the integer.
“epi32” for example indicates that we are treating the 128-bit register as a pack of 4
32-bit integers.
e __mi28i _mm_setl_epi32(int i):
Set the four signed 32-bit integers within the vector to i.
e __m128i _mm_loadu_si128(__m128i *p):
Load the 4 successive ints pointed to by p into a 128-bit vector.
m128i b):
Return vector (ag - bg, aq - b1, as - b, as - b3).
e __m128i _mm_add_epi32(__m128i a, __m128i b):
Return vector (ag + bo, a1 + b1, as + ba, ag + bs)
e void _mm_storeu_si128(__m128i *p, __m128i a):

e __m128i _mm_mullo_epi32(__m128i a

PR—

Store 128-bit vector a at pointer p.
e __m128i _mm_and_si128(__m128i a, __m128i b):
Perform a bitwise AND of 128 bits in a and b, and return the result.
e __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):
The ith element of the return vector will be set to OxFFFFFFFF if the ith

elements of a and b are equal, otherwise it’ll be set to 0.

Parallelism 3

SIMD-ize the following function, which returns the product of all of the elements in

an array.

static int product_naive(int n, int *a) {
int product = 1;
for (int i = 0; i <n; i++) {
product *= a[il;
}

return product;

b

Things to think about: When iterating through a loop and grabbing elements 4 at a
time, how should we update our index for the next iteration? What if our array has
a length that isn’t a multiple of 42 What can we do to handle this tail case?

static int product_vectorized(int n, int *a) {
int result[4];
__m128i prod_v = __mm_set1_epi32(1);
for (int i = 0; i < n/4 x 4; i +=4) { // Vectorized loop
prod_v = __mm_mullo_epi32(prod_v mm_loadu_si128((__m128i *) (a + i)));

— P—

}

_mm_storeu_si128((__m128i *) result, prod_v);

for (int i = n/4 * 4; i < n; i++) { // Handle tail case
result[@] *= al[i];

}

return result[@] * result[1] * result[2] * result[3];

3 Amdahl’s Law

In attempting to parallelize a program, the overall performance speedup will always
be limited by the fraction of the program that cannot be sped up. This overall
speedup can be formulated by Amdahl’s Law, which states that

1

Speedup = m

Speedup refers to the theoretical speedup of the program compared to its naive
implementation. Note that Speedup > 1 since we’re making our program faster

than the original.
F refers to the fraction of the program that can be optimized;

S is the speedup factor for how much that portion of the program can be optimized
by, where (S > 1)

4 Parallelism

Derive Amdahl’s Law using the ratio: Speedup = thaive/toptimized

First, we can split the overall time a program takes into the time it takes for the
part of the program that can be optimized and the rest of it. Letting F' represent

the fraction that can be sped up, we have:

tnaive = F(tnaive) + (1 — F)tnaive

Then, we can implement the optimization, known as the speedup factor S into our
equation by dividing the optimizable portion to get:

Loptimized = M + (1 = F)tnaive

Solving for the ratio Speedup = tnaive/toptimized leads to Amdahl’s Law.

Assuming we have infinite threads and resources, what would our overall speedup
be for a program with some fraction of our code that can be parallelized F'?

With infinite scaling factor .S, our total speedup will approach ﬁ However, in
reality there would be some non-zero overhead that is required to properly split up

work.

You write code that will search for the phrases “Hello Sean”, “Hello Jon”, “Hello
Dan”, “Hello Man”, “Bora is the Best!” in text files. With some analysis, you
determine you can speed up 40% of the execution by a factor of 2 when parallelizing

your code. What is the true speedup?

Using Amdahl’s Law with F=0.4, S=2:

= — =125

1 1
06+% 08

You run a profiling program on a different program to find out what percent of time

within the program each function takes. You get the following results:

Function | % Time
f 30%
g 10%
h 60%

(a) Assuming that each of these functions can be parallelized by the same speedup
factor, which one, if parallelized, would cause the most speedup for the entire

program?
h

(b) What speedup would you get if you parallelized just this function with 8 threads?
Assume that work is distributed evenly across threads and there is no overhead

for parallelization.

1/(0.4+0.6/8) ~ 2.1

Parallelism 5

4 Thread-Level Parallelism

OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

e The parallel directive indicates that each thread should run a copy of the
code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel
{

}

NOTE: The opening curly brace needs to be on a newline or else there will be

a compile-time error!

e The parallel for directive will split up iterations of a for loop over various
threads. Every thread will run different iterations of the for loop. The
following two code snippets are equivalent.

#pragma omp parallel
{

#pragma omp for

#pragma omp parallel for
for (int i = 0; i < n; i++) {

for (int i =0; i < n; i++) { ...

b

There are two functions you can call that may be useful to you:

e int omp_get_thread_num() will return the number of the thread executing
the code

e int omp_get_num_threads() will return the number of total hardware threads

executing the code

For each question below, state and justify whether the program is sometimes
incorrect, always incorrect, slower than serial, faster than serial, or none
of the above. Assume the default number of threads is greater than 1. Assume
no thread will complete before another thread starts executing. Assume arr is an
int[] of length n.

(a) // Set element i of arr to i
#pragma omp parallel

{

for (int i = 0; i < n; i++)
arr[i]

i

3

Slower than serial: There is no for directive, so every thread executes this loop
in its entirety. n threads running n loops at the same time will actually execute

in the same time as 1 thread running 1 loop. The values should all be correct at

the end of the loop since each thread is writing the same values. Furthermore,

6

Parallelism

the existence of parallel overhead due to the extra number of threads will slow

down the execution time.

// Set arr to be an array of Fibonacci numbers.
arr[0] = 0;

arr(1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 27;

Always incorrect (when n > 4): Loop has data dependencies: The calculation
of all threads but the first one will depend on data from the previous thread.
Because we said “assume no thread will complete before another thread starts

executing,” this code will always read incorrect values.

// Set all elements in arr to 0;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
arr[i] = 0;

Faster than serial: The for directive automatically makes loop variables (such
as the index) private, so this will work properly. The for directive splits up
the iterations of the loop into continuous chunks for each thread, so there will

be no data races.

// Set element i of arr to i;
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
*arr = i,

arr++;

Sometimes incorrect: Because we are not indexing into the array, there is a
data race to increment the array pointer. If multiple threads are executed such
that they all execute the first line, *arr = i; before the second line, arr++;,
they will clobber each other’s outputs by overwriting what the other threads
wrote in the same position.

	Pre-Check
	Data-Level Parallelism
	Amdahl's Law
	Thread-Level Parallelism

