
CS 61C Parallelism II
Spring 2023 Discussion 10

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Both the multithreading in data-level parallelism and the manager-worker framework

used in multiprocess code do not use shared memory.

False. Multithreaded programs can access main memory across threads, causing

data races if written incorrectly. On the other hand, however, multiprocess programs

have completely independent and distinct instances of the program starting from

MPI_Init.

1.2 Replacing amoswap.w rd rs2 (rs1) with lw rd 0(rs1) and sw rs2 0(rs1) results

in equivalent behavior.

False. These ”atomic” instructions are labeled such because they cannot be divided

into separate instructions. The use of amoswap.w in data synchronization and only

allowing one thread to have the lock at a time doesn’t work if the swapping happens

in multiple instructions. For example, if two threads execute the lw instruction

before one of them executes the sw instruction, then both threads will have the lock

at the same time.

1.3 Because the manager-worker framework requires one process to deal with load

balancing the rest of the work across programs, process-level parallelism is mostly

useful for large-scale tasks.

True. Open MPI requires massive amounts of overhead, moreso than any other form

of parallelism discussed in this course, with an entire dedicated manager process

and the expensive communication across individual nodes.

1.4 Because process-level parallelism already takes advantage of multiple cores, utilizing

the OpenMP library in the Open MPI framework results in a performance decrease,

as each thread will do the same, redundant work.

False. Thread-level parallelism does its multi-threaded work onto one core, as all

its work is done onto one shared memory, while process-level parallelism can work

across cores. While both forms of parallelism allow for multiple operations to be

done concurrently, the resources each require and can use are different. If allocated

correctly, OpenMp and Open MPI can end up being complementary to each other,

and are necessary optimizations in supercomputers, where much more resources are

available and operations are done on a massive scale.

2 Parallelism II

2 Locks and Critical Sections
2.1 Consider the following multithreaded code to compute the product over all elements

of an array.

1 // Assume arr has length 8*n.

2 double fast_product(double *arr, int n) {

3 double product = 1;

4 #pragma omp parallel for

5 for (int i = 0; i < n; i++) {

6 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

7 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7]

8 product *= subproduct;

9 }

10 return product;

11 }

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when

multiple threads access it simultaneously.

(b) Fix the code using #pragma omp critical. What line would you place the

directive on to create that critical section?

1 double fast_product(double *arr, int n) {

2 double product = 1;

3 #pragma omp parallel for

4 for (int i = 0; i < n; i++) {

5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7]

7 #pragma omp critical

8 product *= subproduct;

9 }

10 return product;

11 }

In order to implement critical sections, we can use the idea of uninterrupted execution,

also known as atomic execution.

In RISC-V, we have two categories of atomic instructions:

1. Amoswap: allows for uninterrupted memory operations within a single in-

struction

2. Load-reserve, store-conditional: allows us to have uninterrupted execution

across multiple instructions

Both of these can be used to achieve atomic primitives. Here we’ll focus on the

former with this example:

Parallelism II 3

Test-and-set

Start: addi t0 x0 1 # Locked = 1

amoswap.w.aq t1 t0 (a0)

bne t1 x0 Start

If the lock is not free, retry

... # Critical section

amoswap.w.rl x0 x0 (a0) # Release lock

amoswap rd, rs2, (rs1): Atomically, loads the word starting at address rs1 into

rd and puts rs2 into memory at address rs1. Data races are avoided using the aq

and rl flags, which acquire a lock that forces multiple threads to wait their turn

until the lock is released.

Test-and-set: We have a lock stored at the address specified by a0. We utilize

amoswap to put in 1 and get the old value. If the old value was a 1, we would not

have changed the value of the lock and we will realize that someone currently has

the lock. If the old value was a 0, we will have just ”locked” the lock and can

continue with the critical section. When we are done, we put a 0 back into the lock

to ”unlock” it.

We’ve experimented with data synchronization across threads in C, but now let’s

take a look at how to parallelize and avoid data races in RISC-V!

We want to parallelize a program that finds the sum of the integers in an array

pointed to by a0 (array length = a2) and places it in memory at address a1. There

is a free word of memory initialized to zero (i.e. result of calloc(4, 1)) pointed to

by a3. For the sake of simplicity, assume there is a function get thread num that

returns the current thread’s number and a function get num threads that returns

the total number of threads.

4 Parallelism II

2.2 Here is some skeleton code to parallelize this operation. Note the use of amoswap.

Fill out the skeleton code accordingly.

1 #Prologue

2 ...

3 mv s0 a0 #s0 points to the array

4 mv s1 a1 #s1 points to the global sum

5 mv s2 a2 #s2 has the length of array

6 mv s3 a3 #s3 holds our lock

7 jal get_num_threads

8 mv s4 a0 #s4 has the total number of threads

9 jal get_thread_num

10 mv s5 a0 #s5 has the current thread number

11 li t0 0 #t0 holds our local sum

12 Loop:

13 bge s5 s2 Exit

14 slli t1 s5 2

15 add t1 s0 t1 #index into array

16 lw t2 0(t1)

17 add t0 t0 t2 #add to local sum

18 add s5 s5 s4 #process indices which are equal to s5, modulo s4

19 j Loop

20 Exit:

21 li t2, 1 #try to swap a nonzero value into the lock

22 Try:

23 lw t1 0(s3) #check if lock is held by other thread

24 bnez t1 Try

25 amoswap.w.aq t1 t2 (s3)

26 bnez t1 Try #must try again if we fail to acquire lock

27 lw t2 0(s1)

28 add t2 t2 t0

29 sw t2 0(s1) #add to the global sum in critical section to avoid data races

30

31 amoswap.w.rl x0 x0 (s3) # release lock

32 #Epilogue

33 ...

2.3 Why do we want to use an atomic instruction in our parallelized implementation?

Without using some sort of atomic instruction, we encounter a data race when

multiple threads could write to the global sum at s1. This results in non-deterministic

behavior in s1.

2.4 Between which lines in the program above should threads start to run in parallel on

separate copies of code? (Equivalent to where we put #pragma omp parallel in C)

Parallelism II 5

Between lines 6 and 7, after we store all arguments but before we find the total

number of threads we are running. This is because we want to store the arguments

only once for efficiency, but we don’t know the number of threads until we spawn

them.

3 Open MPI
Beyond multithreading, the idea of process-level programming is to run one program

on multiple processes at once.

The Open MPI project provides a way of writing programs which can be run on

multiple processes. We can use its C libraries by calling their functions. Then, when

we run the program, Open MPI will create a bunch of processes and run a copy of

the code on each process. Here is a list of the most important functions for this

class:

• int MPI_Init(int* argc, char*** argv) should be called at the start of the

program, passing in the addresses of argc and argv.

• int MPI_Finalize() should be called at the end of the program.

• int MPI_Comm_size(MPI_COMM_WORLD, int *size) gets the total number of

processes running the program, and puts it in size.

• int MPI_Comm_rank(MPI_COMM_WORLD, int *rank) gets the ID of the current

process (0 ∼ total number of processes - 1) and puts it in rank.

• int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int

dest, 0, MPI_COMM_WORLD) sends a message in buf, which consists of count

things with data type datatype to the process with ID dest.

• int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source

, 0, MPI_COMM_WORLD, MPI_Status *status) receives a message consisting of

count things with data type datatype from the process with ID source, and

puts the message into buf. Some additional information is put into a struct at

status.

– If you want to receive a message from any source, set the source to be

MPI_ANY_SOURCE.

– The source of the message can be found in the MPI_SOURCE field of the

outputted status struct.

– If you don’t need the information in the status struct (e.g. because

you already know the source of the message), set the status address to

MPI_STATUS_IGNORE.

Note: Unlike OpenMP, the MPI functions will always put their results into an

address which you provide as their arguments. The return value of the function

is not an output, but rather the error code of the function. In this section, we

will implement the ManyMatMul example from lecture using a manager-worker

approach.

6 Parallelism II

We have n pairs of matrices available in input files Task0a.mat, Task0b.mat, Task1a

.mat, Task1b.mat, ..., and we want to multiply each pair of matrices together, with

their outputs written to the output files Task0ab.mat, Task1ab.mat, ...

We want to accomplish this task using multiple processes such that one process (the

manager) assigns work to all other available processes (the workers).

3.1 First, perform the overall setup required for Open MPI to function. Fill out the

following skeleton of the program:

1 #define TERMINATE -1

2 #define READY 0

3

4 /**

5 * Takes in a number i. Reads files Taskia.mat, Taskib.mat,

6 * multiplies them, then outputs to Taskiab.mat.

7 */

8 int matmul(int i) {

9 // omitted

10 }

11

12 int main(int argc, char** argv) {

13 int numTasks = atoi(argv[1]); // read n from command line

14 MPI_Init(&argc, &argv); // initialize

15 // get process ID of this process and total number of processes

16 int procID, totalProcs;

17 MPI_Comm_size(MPI_COMM_WORLD, &totalProcs);

18 MPI_Comm_rank(MPI_COMM_WORLD, &procID);

19 // are we a manager or a worker?

20 if (procID == 0) {

21 // manager node code (see Q3.3)

22 } else {

23 // worker node code (see Q3.2)

24 }

25 MPI_Finalize(); // clean up

26 }

3.2 Next, fill in what the worker needs to do. Worker processes should repeatedly ask

the manager for more work, then perform the work the manager asks of it. If it

receives a message that there’s no work to be done, it should stop. Let us define a

simple communication protocol between the manager and worker:

• When the worker is free, it will send the READY(0) message to the manager.

• The manager will send one number back, which is the task number the worker

should work on next.

• If there are no more tasks to done, then instead the manager will send back

the TERMINATE(-1) message to the worker.

We will use a single 32-bit signed integer as the message, which corresponds to the

Parallelism II 7

MPI data type MPI_INT32_T.

1 // worker node code

2 int32_t message;

3 while (true) {

4 // request more work

5 message = READY;

6 MPI_Send(&message, 1, MPI_INT32_T, 0, 0, MPI_COMM_WORLD);

7 // receive message from manager

8 MPI_Recv(&message, 1, MPI_INT32_T, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

9 if (message == TERMINATE) break; // all done!

10 matmul(message); // do work

11 }

3.3 Finally, fill in the code for the manager process. While there’s still more work to do,

the manager should wait for a message from any worker and respond with the next

task for the worker to work on. When all work has been allocated, the manager

should wait for another message from each worker (meaning the worker is done with

all work), and respond to each with the TERMINATE(-1) message. The manager

shouldn’t exit before sending TERMINATE to every worker!

1 // manager node code

2 int nextTask = 0; // next task to do

3 MPI_Status status;

4 int32_t message;

5 // assign tasks

6 while (nextTask < numTasks) {

7 // wait for a message from any worker

8 MPI_Recv(&message, 1, MPI_INT32_T, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

9 int sourceProc = status.MPI_SOURCE; // process ID of the source of the message

10 // assign next task

11 message = nextTask;

12 MPI_Send(&message, 1, MPI_INT32_T, sourceProc, 0, MPI_COMM_WORLD);

13 nextTask++;

14 }

15 // wait for all processes to finish

16 for (int i = 0; i < totalProcs - 1; i++) {

17 // wait for a message from any worker

18 MPI_Recv(&message, 1, MPI_INT32_T, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

19 int sourceProc = status.MPI_SOURCE; // process ID of the source of the message

20 message = TERMINATE;

21 MPI_Send(&message, 1, MPI_INT32_T, sourceProc, 0, MPI_COMM_WORLD);

22 }

8 Parallelism II

4 Open MPI with Dependencies
Now that we have a working Open MPI implementation of our ManyMatMul task,

lets extend this to account for data dependencies! Let’s change our task to have

an additional step: multiply n output matrices Task0ab.mat, Task1ab.mat, etc. in

place with a set matrix kernel.mat.

Here we provide a new function to use in the worker process:

1 /**

2 * Takes in a number i. Reads files Taskiab.mat and

3 * multiplies them with kernel.mat in place. If file

4 * does not exist, return -1

5 */

6 int final_matmul(int i) {

7 //omitted

8 }

4.1 Provided below is the pseudocode for the manager process in our new implementation.

Assume that our program and workers are set up in the same way as described in

Q3.

1 // manager node pseudocode

2 counter = 0;

3 while (counter < n) {

4 Wait for a message from any worker;

5 Assign worker with the next pair of matrices to multiply,

6 worker will call matmul(counter);

7 counter++;

8 }

9 counter = 0; // start in-place multiplication

10 while (counter < n) {

11 Wait for a message from any worker;

12 Assign worker with next in-place multiplication,

13 worker will call final_matmul(counter);

14 counter++;

15 }

16 // wait for all processes to finish

17 for each process {

18 Wait for a message from any worker;

19 Send worker message to TERMINATE;

20 }

Will this program successfully output the correct matrix files? If it doesn’t, explain

why. If it does, does it optimally parallelize our desired task? You may assume that

if final_matmul returns -1, the worker will wait some amount of time before sending

the manager another READY message.

As the second while loop does its work in sequential order, the program will be forced

to wait for the corresponding first task to finish before attempting any additional

Parallelism II 9

final_matmuls. For example, if Task1 was a massive, high-dimensional calculation,

each other process would need to wait for the Task1 to finish before attempting

any of the in-place multiplications in the second while loop, creating a performance

bottleneck.

	Pre-Check
	Locks and Critical Sections
	Open MPI
	Open MPI with Dependencies

