
CS 61C OS, Virtual Memory, & I/O
Spring 2023 Discussion 12

1 Precheck
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Responsibilities of the OS include loading programs, handling services, combining

programs together for efficiency.

False. While the OS is responsible for loading programs, handling services (such

as the network stack and the file system), it is actually responsible for isolating

programs from each other so that a given program doesn’t interfere with another

program’s memory or execution, such as by accessing the same memory address.

1.2 The purpose of supervisor mode is to isolate certain instructions and routines from

user programs.

True. In the case that a program is buggy or malicious, supervisor mode limits the

impact of the program on the computer, since the OS maintains control over all the

resources.

1.3 An operating system uses context switches to allow for multiple processes to run

simultaneously across multiple CPUs.

False. Context switches are used to switch between tasks on one CPU, so that

another task can continue while one task is waiting on something else. This illusion

of simultaneous execution happening in multiprogramming is different from the true

parallel execution done on multiple CPUs, which is multiprocessing.

1.4 Having virtual memory helps protect a system.

True. By dedicating specific pages to a program, the OS can ensure that a program

does not access pages it’s not been given access to, providing isolation between

programs.

1.5 The virtual address space is limited by the amount of memory in the system.

False. The physical address space is limited by the amount of physical memory in

the system, the size of the virtual address space is set by the OS.

1.6 The virtual and physical page number must be the same size.

False. There could be fewer physical pages than virtual pages. However, the page

size does need to be the same.

1.7 If a page table entry can not be found in the TLB, then a page fault has occurred.



2 OS, Virtual Memory, & I/O

False, the TLB acts as a cache for the page table, so an item can be valid in page

table but not stored in TLB. A page fault occurs either when a page cannot be

found in the page table or it has an invalid bit.

1.8 For I/O, polling is better than interrupts when I/O events occur regularly at a fast

rate.

True. Polling is especially good for data transfer when the transfer rate is predictable

and varies little, since we can set the polling rate to match the transfer rate and

avoid the overhead of interrupts for each transfer.

1.9 Memory-mapped IO only works with polling.

False. The implementation backing the memory mapping can use interrupt-driven

IO (for example, reading files).

2 Addressing
Virtual Address (VA) What your program uses

Virtual Page Number (VPN) Page Offset

Physical Address (PA) What actually determines where in memory to go

Physical Page Number (PPN) Page Offset

For example, with 4 KiB pages and byte addresses, there are 12 page offset bits

since 4 KiB = 212 B = 4096 B.

Pages
A chunk of memory or disk with a set size. Addresses in the same virtual page map

to addresses in the same physical page. The page table determines the mapping.

Valid Dirty Permission Bits PPN

— Page entry (VPN: 0) —

— Page entry (VPN: 1) —

Each stored row of the page table is called a page table entry. There are 2VPN bits

such entries in a page table. Say you have a VPN of 5 and you want to use the

page table to find what physical page it maps to; you’ll check the 5th (0-indexed)

page table entry. If the valid bit is 1, then that means that the entry is valid (in

other words, the physical page corresponding to that virtual page is in main memory



OS, Virtual Memory, & I/O 3

as opposed to being only on disk) and therefore you can get the PPN from the

entry and access that physical page in main memory. The page table is stored in

memory: the OS sets a register (the Page Table Base Register) telling the hardware

the address of the first entry of the page table. If you write to a page in memory, the

processor updates the “dirty” bit in the page table entry corresponding to that page,

which lets the OS know that updating that page on disk is necessary (remember:

main memory contains a subset of what’s on disk). This is a similar concept as

having a dirty bit for each cache block in a write-back cache. Each process gets its

own illusion of full memory to work with, and therefore its own page table.

Protection Fault The page table entry for a virtual page has permission bits that

prohibit the requested operation. This is how a segmentation fault occurs.

Page Fault The page table entry for a virtual page has its valid bit set to false.

This means that the entry is not in memory. For simplicity, we will assume

the address causing the page fault is a valid request, and maps to a page that

was swapped from memory to disk. Since the requested address is valid, the

operating system checks if the page exists on disk. If so, we transfer the page

to memory (evicting another page if necessary), and add the mapping to the

page table and the translation lookaside buffer (TLB).

Translation Lookaside Buffer
A cache for the page table. Each block is a single page table entry. If an entry is

not in the TLB, it’s a TLB miss. Typically fully associative:

TLB Valid Tag (VPN)
Page Table Entry

Page Dirty Permission Bits PPN

— TLB entry —

— TLB entry —

To access some memory location, we get the virtual page number (VPN) from the

virtual address (VA) and first try to translate the VPN to a physical page number

(PPN) using the translation lookaside buffer (TLB). If the TLB doesn’t contain the

desired VPN, we check if the page table contains it (remember: the TLB is a subset

of the page table!). If the page table doesn’t contain an entry for the VPN, then

this is a page fault; memory doesn’t contain the corresponding physical page! This

means we need to fetch the physical page from disk and put it into memory, update



4 OS, Virtual Memory, & I/O

the page table entry, and load the entry into the TLB, Then, we use the physical

page and the offset of the physical address in the page to access memory as the

program intended.

2.1 What are three specific benefits of using virtual memory?

• Illusion of access to entire address space (bridges memory and disk in memory

hierarchy).

• Avoids memory address conflict between programs by simulating a separate

full address space for each process, so that the linker/loader don’t need to

know about other programs.

• Enforces protection between processes and even within a process (e.g. read-only

pages set up by the OS).

2.2 What should happen to the TLB when a new value is loaded into the page table

address register (i.e. we are switching page tables to those for another process)?

The valid bits of the TLB should all be set to 0. The page table entries in the TLB

corresponded to the old process/page table, so none of them are valid once the page

table address register points to a different page table.

3 VM Access Patterns
3.1 A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative

TLB with LRU replacement (the LRU field is 3 bits and encodes the order in which

pages were accessed, 0 being the most recent). At some time instant, the TLB for

the current process is the initial state given in the table below, and we have three

free physical pages as given below. Assume that all current page table entries are in

the initial TLB. Assume also that all pages can be read from and written to. Fill in

the final state of the TLB according to the following access pattern, and also write

out the physical addresses corresponding to each location accessed.

Free Physical Pages 0x17, 0x18, 0x19

Access Pattern

1. 0x11f0 (Read)

2. 0x1301 (Write)

3. 0x20ae (Write)

4. 0x2332 (Write)

5. 0x20ff (Read)

6. 0x3415 (Write)

Initial TLB



OS, Virtual Memory, & I/O 5

VPN PPN Valid Dirty LRU

0x01 0x11 1 1 0

0x00 0x00 0 0 7

0x10 0x13 1 1 1

0x20 0x12 1 0 5

0x00 0x00 0 0 7

0x11 0x14 1 0 4

0xac 0x15 1 1 2

0xff 0xff 1 0 3

Final TLB

VPN PPN Valid Dirty

0x01 0x11 1 1

0x13 0x17 1 1

0x10 0x13 1 1

0x20 0x12 1 1

0x23 0x18 1 1

0x11 0x14 1 0

0xac 0x15 1 1

0x34 0x19 1 1

1. 0x11f0 (Read): hit, PA: 0x14f0; LRUs: 1, 7, 2, 5, 7, 0, 3, 4

2. 0x1301 (Write): miss, map VPN 0x13 to PPN 0x17, set valid and dirty,

PA: 0x1701; LRUs: 2, 0, 3, 6, 7, 1, 4, 5

3. 0x20ae (Write): hit, set dirty, PA: 0x12ae; LRUs: 3, 1, 4, 0, 7, 2, 5, 6

4. 0x2332 (Write): miss, map VPN 0x23 to PPN 0x18, set valid and dirty,

PA: 0x1832; LRUs: 4, 2, 5, 1, 0, 3, 6, 7

5. 0x20ff (Read): hit, PA: 0x12ff; LRUs: 4, 2, 5, 0, 1, 3, 6, 7

6. 0x3415 (Write): miss and replace last entry, map VPN 0x34 to 0x19, set

dirty, PA: 0x1915; LRUs, 5, 3, 6, 1, 2, 4, 7, 0



6 OS, Virtual Memory, & I/O

4 Polling & Interrupts
4.1 Fill out this table that compares polling and interrupts.

Operation Definition Pro/Good for Con

Polling
Forces the hardware to

wait on ready bit (alter-

natively, if timing of de-

vice is known, the ready

bit can be polled at the

frequency of the device).

• Low Latency

• Low overhead when

data is available

• Good For: devices that

are always busy

or when you can’t

make progress until

the device replies

• Can’t do anything else

while polling

• Can’t sleep while

polling (CPU

always at full

speed)

Interrupts
Hardware fires an “excep-

tion” when it becomes

ready. CPU changes PC

register to execute code

in the interrupt handler

when this occurs.

• Can do useful work

while waiting for re-

sponse

• Can wait on many

things at once

• Good for: Devices that

take a long time to

respond, especially

if you can do other

work while waiting.

• Nondeterministic when

interrupt occurs

• interrupt handler has

some overhead (e.g.

saves all registers,

flush pipeline, etc.)

• Higher latency per

event

• Worse throughput



OS, Virtual Memory, & I/O 7

5 Memory Mapped I/O
5.1 For this question, the following addresses correspond to registers in some I/O devices

and not regular user memory.

• 0xFFFF0000—Receiver Control: LSB is the ready bit, there may be other bits

set that we don’t need right now.

• 0xFFFF0004—Receiver Data: Received data stored at lowest byte.

• 0xFFFF0008—Transmitter Control: LSB is the ready bit, there may be other

bits set that we don’t need right now.

• 0xFFFF000C—Transmitter Data: Transmitted data stored at lowest byte.

Recall that receiver will only have data for us when the corresponding ready bit

is 1, and that we can only write data to the transmitter when its ready bit is 1.

Write RISC-V code that reads byte from the receiver and writes that byte to the

transmitter (busy-waiting if necessary).

lui t0 0xffff0

receive_wait: lw t1 0(t0)

andi t1 t1 1 # poll on ready of receiver

beq t1 x0 receive_wait

lb t2 4(t0) # load data

transmit_wait: lw t1 8(t0) # poll on ready of transmitter

andi t1 t1 1

beq t1 x0 transmit_wait # write to transmitter

sb t2 12(t0)


	Precheck
	Addressing
	VM Access Patterns
	Polling & Interrupts
	Memory Mapped I/O

