Inst.eecs.berkeley.edu/~cs61c/su06

CS61C : Machine Structures
Lecture #13: CALL

2000-07-19

ﬂ Andy Carle
CS 61C L13 CALL (1) A Carle, Summer 2006 © UCB

CALL Overview

e Interpretation vs Translation
e Translating C Programs

« Compiler

« Assembler

e Linker
e Loader

« An Example

ﬂ CS 61C L13 CALL (2) A Carle, Summer 2006 © UCB

Interpretation vs Translation

*How do we run a7program written in a
source language”

Interpreter: Directly executes a
program in the source language

* Translator: Converts a program from
the source language to an equivalent
program in another language

ﬂ CS 61C L13 CALL (3) A Carle, Summer 2006 © UCB

Language Continuum

Scheme
Java Assembly

C++ C machine language

—

Difficult to write

Easy to write
Efficient to run

Inefficient to run

 Interpret a high level language if
efficiency Is not critical

* Translate (compile) to a lower level
language to improve performance

ﬂ e Scheme example ...

CS 61C L13 CALL (4)

Interpretation

[Scheme program: foo.scm

Scheme Interpreter

Q CS 61C L13 CALL (5) A Carle, Summer 2006 © UCB

Translation

[Scheme program: foo.scm

Scheme Compiler

|Executable(mach lang pgm): a.out |

Hardware

°Scheme Compiler is a translator from
Scheme to machine language.

ﬂ CS 61C L13 CALL (6) A Carle, Summer 2006 © UCB

Interpretation

 Any good reason to interpret machine
language In software?

 SPIM — useful for learning / debugging

 Apple Macintosh conversion

e Switched from Motorola 680x0
Instruction architecture to PowerPC.

e Could require all programs to be re-
translated from high level language

 Instead, let executables contain old
and/or new machine code, interpret old
2 code in software If necessary

CS 61C L13 CALL (7) A Carle, Summer 2006 © UCB

Interpretation vs. Translation?
e Easier to write interpreter

 Interpreter closer to high-level, so gives
better error messages (e.g., SPIM)

e Translator reaction: add extra information
to help debugging (line numbers, names)

e Interpreter slower (10x?) but code Is
smaller (1.5X to 2X?)

Interpreter provides instruction set
Independence: run on any machine

e See Apple example

ﬂ CS 61C L13 CALL (8) A Carle, Summer 2006 © UCB

Steps to Starting a Program
[C program: foo.c]

Compiler

[Assembly program: foo.s]|

Assembler

[Object(mach Tang module): foo.0 |

Linker Tib. o

|[Executable(mach lang pgm): a.out |

Loader

Q | Memory |
CS 61C L13 CALL (9) A Carle, Summer 2006 © UCB

Compiler

 Input: High-Level Language Code
(e.q., C, Java such as T00.cC)

e Qutput: Assembly Language Code
(e.g., foo.s for MIPS)

*Note: Output may contain
pseudoinstructions

* Pseudoinstructions: instructions that
assembler understands but not In
machine (last lecture) For example:

e mov $s1,$s2 = or P$sl1,$s2,%zero

ﬂ CS 61C L13 CALL (10) A Carle, Summer 2006 © UCB

Where Are We Now?
C program: foo.c
Compiler)
JAssem oly program: foo$
Assembler |~

:|Object(mach lang module): foo.0
Linker ———Tib.o
gecutable(mach lang pgm): a.o%

(Loader |«

ﬂ CS 61C L13 CALL (11) A Carle, Summer 2006 © UCB

Assembler

e Input: MAL Assemblgl Language Code
(e.g., foo.s for MIPS)

e Qutput: Object Code, information tables
(e.g., foo.o for MIPS)

* Reads and Uses Directives
* Replace Pseudoinstructions
 Produce Machine Language

e Creates ODbject File

ﬂ CS 61C L13 CALL (12) A Carle, Summer 2006 © UCB

Assembler Directives (p. A-51 to A-53)

* Give directions to assembler, but do not
produce machine instructions

.text: Subsequent items put in user text
segment

.data: Subsequent items put In user data
segment

-globl sym: declares sym global and can
be referenced from other files

.asciiz str: Store the string strin
memory and null-terminate it

-word wl..wn: Store the n 32-bit quantities
Z In successive memory words

CS 61C L13 CALL (13) A Carle, Summer 2006 © UCB

Pseudoinstruction Replacement

« Asm. treats convenient variations of machine
language instructions as if real instructions

Pseudo: Real.
subu $sp,$sp, 32 addiu $sp,$sp,-32
sd $a0, 32($sp) gw %g?z g%ggggg
mul $t7,%$t6,$t5 mult $t6,$5t5
mflo $t7
addu $t0,%$t6,1 addiu $t0,$t6,1
ble $t0,100, loop slti $at,$t0,101
bne $at,$0, loop
la $a0, str lui $at, left(str)

ori $a0,%at,right(str)

ﬂ CS 61C L13 CALL (14) A Carle, Summer 2006 © UCB

Producing Machine Language (1/3)

e Constraint on Assembler:

 The object file output (foo.0) may be only
one of many object files in the final
executable:

- C: #include “my_helpers.h”
- C: #include <stdio.h>

e Consequences:

* Object files won’t know their base
addresses until they are linked/loaded!

e References to addresses will have to be
adjusted in later stages

ﬂ CS 61C L13 CALL (15) A Carle, Summer 2006 © UCB

Producing Machine Language (2/3)

Simple Case
e Arithmetic, Logical, Shifts, and so on.

e All necessary info is within the
instruction already.

e What about Branches?
e PC-Relative and in-file

*In TAL, we know by how many
Instructions to branch.

S0 these can be handled easily.

ﬂ CS 61C L13 CALL (16) A Carle, Summer 2006 © UCB

Producing Machine Language (3/3)

 What about jumps (J and jal)?
e Jumps require absolute address.

e What about references to data?
ela gets broken up into lur and ori

* These will require the full 32-bit address
of the data.

e These can’t be determined yet, so we
create two tables for use by
linker/loader...

ﬂ CS 61C L13 CALL (17) A Carle, Summer 2006 © UCB

1. Symbol Table

e List of “items” provided by this file.

 What are they?

- Labels: function calling

- Data: anything in the .data section;
variables which may be accessed across
files

e Includes base address of label in the file.

ﬂ CS 61C L13 CALL (18) A Carle, Summer 2006 © UCB

2: Relocation Table

e List of “items” needed by this file.
 Any label jJumped to: j or jal
- Internal

- external (including lib files)

« Any named piece of data
- Anything referenced by the la instruction

- static variables

e Contains base address of instruction
w/dependency, dependency name

ﬂ CS 61C L13 CALL (19) A Carle, Summer 2006 © UCB

Question

*Which lines go in the symbol table and/or
relocation table?
my func:

lult $a0 my arrayh # a
ori $a0 $a0 my arrayl # b
Jjal add _link # C
bne $a0,%$v0, my func # d

(from l1a)
(from 1a)

Symbol: my_func relocate: my_array
- relocate: my_array

A:
B:
C: - relocate: add_link
D.

ﬂ CS 61C L13 CALL (20)

A Carle, Summer 2006 © UCB

Peer Instruction 1

1. Assembler knows where a module’s data &
Instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Javadesigners used an interpreter (rather
than a translater) mainly because of (at least
one of). ease of writing, better error msgs,
smaller object code.

ﬂ CS 61C L13 CALL (21) A Carle, Summer 2006 © UCB

Administrivia
e HW 4

 Due Online Friday

* Project 2
* Released Today
e Due ?

e Midterm 2
e Plan for August 4th

ﬂ CS 61C L13 CALL (22) A Carle, Summer 2006 © UCB

Object File Format

*object file header: size and position of
the other pieces of the object file

etext segment: the machine code

*data segment: binary representation of
the data in the source file

erelocation information: identifies lines
of code that need to be “handled”

esymbol table: list of this file’s labels
and data that can be referenced

edebugging information

CS 61C L13 CALL (23) A Carle, Summer 2006 © UCB

Where Are We Now?
|C program: fo@
| Compiler |
JAssembly program: fooﬁ
|Assembler [+

:|Object(mach lang module): fo0.0
| Linker L«___l B0
@ecutable(mach lang pgm): a.o%

Loader |«

A Carle, Summer 2006 © UCB

Link Editor/Linker (1/3)

e Input: Object Code, Information tables
(e.g., foo.o for MIPS)

« Qutput: Executable Code
(e.g., a.out for MIPS)

 Combines several object (.0) files into
a single executable (“linking”)

 Enable Separate Compilation of files

 Changes to one file do not require
recompilation of whole program

- Windows NT source is >40 M lines of code!

e Link Editor name from editing the “links”
Q In jump and link instructions

CS 61C L13 CALL (25) A Carle, Summer 2006 © UCB

Link Editor/Linker (2/3)

a.out
Relocated text 1

Relocated text 2

Relocated data 1

Relocated data 2

ﬂ CS 61C L13 CALL (26) A Carle, Summer 2006 © UCB

Link Editor/Linker (3/3)

e Step 1: Take text segment from each
.0 file and put them together.

« Step 2: Take data segment from each
.0 file, put them together, and
concatenate this onto end of text
segments.

e Step 3. Resolve References

* Go through Relocation Table and handle
each entry

e That Is, fill In all absolute addresses

ﬂ CS 61C L13 CALL (27) A Carle, Summer 2006 © UCB

Resolving References (1/2)

eLinker assumes first word of first text
segment is at address 0x00000000.

e Linker knows:
e length of each text and data segment
e ordering of text and data segments

e Linker calculates:

e absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

ﬂ CS 61C L13 CALL (28) A Carle, Summer 2006 © UCB

Resolving References (2/2)

eTO resolve references:

esearch for reference (data or label) in all
symbol tables

if not found, search library files
(for example, for printf)

eonce absolute address Is determined, fill
In the machine code appropriately

* Output of linker: executable file
containing text and data (plus header)

ﬂ CS 61C L13 CALL (29) A Carle, Summer 2006 © UCB

Where Are We Now?
|C program: fo@
| Compiler |
JAssembly program: fooﬁ
|Assembler [+

:|Object(mach lang module): f00.0
| Linker If___| B o
@ecutable(mach lang pgm): a.o%

Loader |-

A Carle, Summer 2006 © UCB

Loader (1/3)

* Input: Executable Code
(e.g., a.out for MIPS)

e Output: (program is run)
e Executable files are stored on disk.

*When one is run, loader’s job Is to
load it into memory and start it
running.

In reality, loader is the operating
system (OS)

e loading is one of the OS tasks

ﬂ CS 61C L13 CALL (31) A Carle, Summer 2006 © UCB

Loader (2/3)
eSO what does a

e Reads executab

oader do?

e fi

e’'s header to

determine size of text and data

segments

* Creates new address space for
program large enough to hold text and
data segments, along with a stack

segment

e Copies Iinstructions and data from
executable file into the new address
space (this may be anywhere In

memory)

ﬂ CS 61C L13 CALL (32)

A Carle, Summer 2006 © UCB

Loader (3/3)

e Coples arguments passed to the
program onto the stack

 Initializes machine registers

* Most registers cleared, but stack pointer
assigned address of 1st free stack
location

e Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

 If main routine returns, start-up routine
terminates program with the exit system

Q CS 61C L13 CALL (33) A Carle, Summer 2006 © UCB

Example: C = Asm = Obj = Exe = Run
#include <stdio.h>

int main (int argc, char *argv]]) {

for (1 = 0; 1 <=100; 1 =1 + 1)
= S =

printf (*'The sum from O .. 100 1s %d\n",
sum) ;
}

ﬂ CS 61C L13 CALL (34)

A Carle, Summer 2006 © UCB

Example: C = Asm = Obj = Exe = Run

__text
.align 2
-.globl main
main:
subu $sp,$sp, 32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
Iw $t6, 28($sp)
mul $t7, $t6,5t6
Iw $t8, 24($sp)
addu $t9,$t8,$t7

w $t9, 24($sp)

CS 61C L13 CALL (35)

addu $t0, $t6, 1
sw $t0, 28($sp)

ble $t0,100, loop
la $a0, str

Iw $al, 24($sp)

jJal printf

move $vO, $0

Iw $ra, 20($sp)

addiu $sp,$sp,32

J 9%ra Where are
-data 7 pseudo-
-align O jnstructions?

Str:

asci1z ""The sum
from O .. 100 1s
%d\n""

A Carle, Summer 2006 © UCB

Example: C = Asm = Obj] = Exe = Run

.text addu $t0, $t6, 1
~_align 2 sw $t0, 28($sp)
_.globl main ble $t0,100, loop
main: la $a0, str

subu $sp,$sp, 32 Iw $al, 24($sp)
sw $ra, 20($sp) Jal printf

sd $al0, 32($sp) move $vO0, $0

sw $0, 24($sp) Iw $ra, 20($sp)
sw $0, 28($sp) addiu $sp,3$sp,32
loop: J $ra 7pseudo-
Iw $t6, 28($sp) -data instructions
mul $t7, $t6,$t6 -align O ynderlined
Iw $t8, 24($sp) str:

addu $t9,$t8,$t7 _fggﬁléz_:ﬂ¥%dm¥g

w $t9, 24($sp) %d\n"'

CS 61C L13 CALL (36) A Carle, Summer 2006 © UCB

00

Example: C = Asm = Ob] = Exe = Run

‘Remove pseudoinstructions, assign addresses

addiu $29,%$29,-32

04
08

SW $31,20(%$29)
Sw $4, 32(3$29)

Oc

sw__ $5, 36(%$29)

10
14
18
1c
20

SW $0, 24($29)
Sw $0, 28(%$29)
Iw $14, 28($29)
multu $14, $14
mfFlo $15

24
28
2C

Iw $24, 24($29)
addu $25,%24,%$15
sw $25, 24(%$29)

ﬂ CS 61C L13 CALL (37)

30 addiu $8,%14, 1
34 sw $8,28($29)
38 st $1,%$8, 101
3c bne $1,%$0, -10
40 lTui $4, 1.str
44 ori $4,%4,r.str
48 1w $5,24(%$29)
4c jal printf

50 add $2, $0, $0
54 1w $31,20(%$29)
58 addiu $29,%$29,32
5¢c jr $31

A Carle, Summer 2006 © UCB

Example: C = Asm = Ob] = Exe = Run

 Example.o contains these tables:

 Symbol Table
e Label Address
main: text+0x00000000 global
loop: text+0x00000018
Str: data+0x00000000

e Relocation Information

e Address Instr. Type Dependency
text+00040 luin 1.str

text+00044 ori r.str
Q text+0004c jal printf

CS 61C L13 CALL (38) A Carle, Summer 2006 © UCB

Example: C = Asm = Obj = Exe = Run

eLinker sees all the .o files.

* One of these (example.o) provides main
and needs printf.

 Another (stdio.o) provides printf.

1) Linker decides order of text, data
segments

«2) This fills out the symbol tables

*3) This fills out the relocation tables

Q CS 61C L13 CALL (39) A Carle, Summer 2006 © UCB

Example: C = Asm = Obj = Exe = Run

e Linker first stage:
» Set text= 0x0400 0000; data=0x1000 0000

« Symbol Table

e Label Address
main: 0x04000000 global
loop: 0x04000018
str: 0x10000000

e Relocation Information

e Address Instr. Type Dependency
text+0x0040 ful 1.str
text+0x0044 ori r.str
text+0x004c jal printf

ﬂ CS 61C L13 CALL (40) A Carle, Summer 2006 © UCB

Example: C = Asm = Obj = Exe = Run

e Linker second stage:
» Set text= 0x0400 0000; data=0x1000 0000

« Symbol Table

e Label Address
main: 0x04000000 global
loop: 0x04000018
str: 0x10000000

e Relocation Information

e Address Instr. Type Dependency
text+0x0040 lui 1.str=0x1000
text+0x0044 ori r.str=0x0000
text+0x004c jal printf=04440000

ﬂ CS 61C L13 CALL (41) A Carle, Summer 2006 © UCB

00
04
08
Oc
10
14
18
1c
20
24
28
2C

Example: C = Asm = Obj = Exe = Run
oEdit Addresses: start at 0x0400000

addiu $29,%$29,-32
SW $31,20(%$29)
sw $4, 32($29)
sw $5, 36($29)
SW $0, 24(%$29)
SW $0, 28(%$29)
Iw $14, 28($29)
multu $14, $14
mFlo $15

lw $24, 24($29)
addu $25,%24,%$15
sw $25, 24($29)

ﬂ CS 61C L13 CALL (42)

30
34
38
3C
40
44
48
4C
50
54
58
5C

addiu $8,%14, 1
SW $8,28(%$29)
st $1,%$8, 101
bne $1,%$0, -10
lut $4, 1000
ori $4,%4,0000
w $5,24($29)
jal 01110000
add $2, $0, $0
Iw $31,20(%$29)
addiu $29,%$29,32
jr $31

A Carle, Summer 2006 © UCB

-

-

(Y] ©O000000—HHA—THOOH-TOOOOO0OO0OH
OO0 O00OO00OO0O0OHOHOOOOOOOOO
O—H1OHAOA—"1O0O0O0—HA—"1OO0—H1OOO—HO—HO OO
QOO0 —AAOO—1OOO—1O—"A—HOOO—HO
OHO O A A A—A—AO O A A—HO—HO 1O OO
—O—IHOOOO0OO—T1OO—H—HOOOTH—HO—O
—00000000O0—HOOO—HOOOHOOOOO
—O00000000000O0O0—HOOOHOOOOO
—O000000000O00O0O0—HOOOOOOOOO
—O00000000000O0O0—HOOOOOOOOO
—O00000000000OO—HOOOOHOOOO
—00000O00O00OO—THHOOOOOOOOO
—10000000O000O—THO—HO—HOOOOOO
v 1O 0000000000 THOHOOOOOOOOO
O 100000000000 HHAAHOOOOOOOOO
ﬂv100000000000011000000000
—HHO—HOOOOOO—HOOHO—HO—HOOHHOO
O—1OO0O0O0—HO—THOOOO—HOOOOOOHOOO
A= HOO OO0 O0O0O—HOOH—HO—HH—HOO
10000 —THA—TAOAO0O—T1O 1O OO O—H—HOO
—I—HOOOOO0O—HOOOOOOOHOOHOHHOO
A A A A A0 OO —T1OO—H—HO—T1OO—H—H—HO
OO0 O0O0O0OOHTHOOOOOOOOO0OOOHO
) Ard—AAAAAAAAOAOOO—HO—HAO —HA—A——HO
< A A A AAAAAAOHAOHOHOOHHHO
A A A A—TAATA—AO OO 1O HO—HO—HOO—H—HHO
A A A AAAAADOHO A O A AA—AAA—AHOO
O 1O O 1O OO 1O —1OO0O
OO0 0O0O00O0OO0O0O0—HOHOOOOOOO
A AT —T1O OO —"—1OO0O—TI—H1OO—HO—HOO
Gllclclololololslslslolololslslolololslslolslolals)
O A —A—"1O0O0O0—1OOO—HO—HOO—HO OO

= Exe =

O<T00 OO0 OO0 OO OO O
A= ANANANANM LOLO

Example:
0x004000
0x004004
0x004008
0x00400¢
0x00404
0x00404
0x00404
0x00404
0x00405
0x00405
0x0040
0040

Gt

i ™M
OCOOOOOOOOO
SIS
olooooooool)
OCOOOOOOOOO
XXXXXXXXXX
COOOOOOOOO

0x00403
0x00403

A Carle, Summer 2006 © UCB

CS 61C L13 CALL (43)

Peer Instruction 2

Which of the following instr. may
need to be edited during link phase?

Loop: Buil $at, OxABCD }# A
ori $al0,%at, OxXFEDC
jal add link # B
bne $a0,$v0, Loop # C

ﬂ CS 61C L13 CALL (44) A Carle, Summer 2006 © UCB

Things to Remember (1/3)
|C program: f00.c |
Compiler

|Assembly program: foo.s |
Assembler

|Object(mach lang module): f00.0 |
Linker ——lib.o

<

|Executable(mach lang pgm): a.out|

Loader

ﬂ CS 61C L13 CALL (45) A Carle, Summer 2006 © UCB

Things to Remember (2/3)

« Compiler converts a single HLL file
Into a single assembly language file.

« Assembler removes |
pseudoinstructions, converts what it
can to machine language, and creates
a checklist for the linker (relocation
tat])clle). This changes each .s file Into a
.0 file.

eLinker combines several .o files and
resolves absolute addresses.

| oader loads executable into memory
and begins execution.

CS 61C L13 CALL (46)

A Carle, Summer 2006 © UCB

Things to Remember 3/3

e Stored Program concept mean
Instructions just like data, so can take data
from storage, and keep transforming it
until load registers and jump to routine to
begin execution

« Compiler = Assembler = Linker (= Loader)

« Assembler does 2 passes to resolve
addresses, handling internal forward
references

*Linker enables separate compilation,
libraries that need not be compiled, and
resolves remaining addresses

ﬂ CS 61C L13 CALL (47) A Carle, Summer 2006 © UCB

