
CS 61C L13 CALL (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #13: CALL

2006-07-19

Andy Carle



CS 61C L13 CALL (2) A Carle, Summer 2006 © UCB

CALL Overview

• Interpretation vs Translation
• Translating C Programs

• Compiler
• Assembler
• Linker
• Loader

• An Example



CS 61C L13 CALL (3) A Carle, Summer 2006 © UCB

Interpretation vs Translation

• How do we run a program written in a 
source language?

• Interpreter: Directly executes a 
program in the source language

• Translator: Converts a program from 
the source language to an equivalent 
program in another language



CS 61C L13 CALL (4) A Carle, Summer 2006 © UCB

Language Continuum

• Interpret a high level language if 
efficiency is not critical 

• Translate (compile) to a lower level 
language to improve performance

• Scheme example …

Easy to write
Inefficient to run

Difficult to write
Efficient to run

Scheme
Java
C++ C

Assembly
machine language



CS 61C L13 CALL (5) A Carle, Summer 2006 © UCB

Interpretation

Scheme program: foo.scm

Scheme Interpreter



CS 61C L13 CALL (6) A Carle, Summer 2006 © UCB

Translation

Scheme program: foo.scm

Hardware

Scheme Compiler

Executable(mach lang pgm): a.out

°Scheme Compiler is a translator from 
Scheme to machine language. 



CS 61C L13 CALL (7) A Carle, Summer 2006 © UCB

Interpretation

• Any good reason to interpret machine 
language in software?

• SPIM – useful for learning / debugging
• Apple Macintosh conversion

• Switched from Motorola 680x0 
instruction architecture to PowerPC.

• Could require all programs to be re-
translated from high level language

• Instead, let executables contain old 
and/or new machine code, interpret old 
code in software if necessary



CS 61C L13 CALL (8) A Carle, Summer 2006 © UCB

Interpretation vs. Translation?
• Easier to write interpreter
• Interpreter closer to high-level, so gives 
better error messages (e.g., SPIM)

• Translator reaction: add extra information 
to help debugging (line numbers, names)

• Interpreter slower (10x?) but code is 
smaller (1.5X to 2X?)

• Interpreter provides instruction set 
independence: run on any machine

• See Apple example



CS 61C L13 CALL (9) A Carle, Summer 2006 © UCB

Steps to Starting a Program
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker

Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o



CS 61C L13 CALL (10) A Carle, Summer 2006 © UCB

Compiler

• Input: High-Level Language Code 
(e.g., C, Java such as foo.c)

• Output: Assembly Language Code
(e.g., foo.s for MIPS)

• Note: Output may contain 
pseudoinstructions

• Pseudoinstructions: instructions that 
assembler understands but not in 
machine (last lecture) For example:

• mov $s1,$s2 ⇒ or $s1,$s2,$zero



CS 61C L13 CALL (11) A Carle, Summer 2006 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o



CS 61C L13 CALL (12) A Carle, Summer 2006 © UCB

Assembler

• Input: MAL Assembly Language Code
(e.g., foo.s for MIPS)

• Output: Object Code, information tables
(e.g., foo.o for MIPS)

• Reads and Uses Directives
• Replace Pseudoinstructions
• Produce Machine Language
• Creates Object File



CS 61C L13 CALL (13) A Carle, Summer 2006 © UCB

Assembler Directives (p. A-51 to A-53)

• Give directions to assembler, but do not 
produce machine instructions

.text: Subsequent items put in user text 
segment
.data: Subsequent items put in user data 
segment
.globl sym: declares sym global and can 
be referenced from other files
.asciiz str: Store the string str in 
memory and null-terminate it
.word w1…wn: Store the n 32-bit quantities 
in successive memory words



CS 61C L13 CALL (14) A Carle, Summer 2006 © UCB

Pseudoinstruction Replacement

• Asm. treats convenient variations of machine 
language instructions as if real instructions
Pseudo: Real:
subu $sp,$sp,32 addiu $sp,$sp,-32

sd $a0, 32($sp) sw $a0, 32($sp)
sw $a1, 36($sp)

mul $t7,$t6,$t5 mult $t6,$t5
mflo $t7

addu $t0,$t6,1 addiu $t0,$t6,1

ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

la $a0, str lui $at,left(str)
ori $a0,$at,right(str)



CS 61C L13 CALL (15) A Carle, Summer 2006 © UCB

Producing Machine Language (1/3)

• Constraint on Assembler:
• The object file output (foo.o) may be only 
one of many object files in the final 
executable:

- C: #include “my_helpers.h”
- C: #include <stdio.h> 

• Consequences: 
• Object files won’t know their base 
addresses until they are linked/loaded!

• References to addresses will have to be 
adjusted in later stages



CS 61C L13 CALL (16) A Carle, Summer 2006 © UCB

Producing Machine Language (2/3)

• Simple Case
• Arithmetic, Logical, Shifts, and so on.
• All necessary info is within the 
instruction already.

• What about Branches?
• PC-Relative and in-file
• In TAL, we know by how many 
instructions to branch.

• So these can be handled easily.



CS 61C L13 CALL (17) A Carle, Summer 2006 © UCB

Producing Machine Language (3/3)

• What about jumps (j and jal)?
• Jumps require absolute address.

• What about references to data?
•la gets broken up into lui and ori
• These will require the full 32-bit address 
of the data.

• These can’t be determined yet, so we 
create two tables for use by 
linker/loader…



CS 61C L13 CALL (18) A Carle, Summer 2006 © UCB

1: Symbol Table
• List of “items” provided by this file.

• What are they?
- Labels: function calling
- Data: anything in the .data section; 

variables which may be accessed across 
files

• Includes base address of label in the file.



CS 61C L13 CALL (19) A Carle, Summer 2006 © UCB

2: Relocation Table

• List of “items” needed by this file.
• Any label jumped to: j or jal

- internal
- external (including lib files)

• Any named piece of data
- Anything referenced by the la instruction
- static variables

• Contains base address of instruction 
w/dependency, dependency name



CS 61C L13 CALL (20) A Carle, Summer 2006 © UCB

Question
• Which lines go in the symbol table and/or 
relocation table?
my_func:
lui $a0 my_arrayh # a (from la)
ori $a0 $a0 my_arrayl # b (from la)
jal add_link # c 
bne $a0,$v0, my_func # d

A:
B:
C:
D:

Symbol: my_func relocate: my_array

- -

- relocate: my_array
- relocate: add_link



CS 61C L13 CALL (21) A Carle, Summer 2006 © UCB

Peer Instruction 1

1. Assembler knows where a module’s data & 
instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Java designers used an interpreter (rather 
than a translater) mainly because of (at least 
one of): ease of writing, better error msgs, 
smaller object code.



CS 61C L13 CALL (22) A Carle, Summer 2006 © UCB

Administrivia

• HW 4
• Due Online Friday

• Project 2
• Released Today
• Due ?

• Midterm 2
• Plan for August 4th



CS 61C L13 CALL (23) A Carle, Summer 2006 © UCB

Object File Format
• object file header: size and position of 
the other pieces of the object file

• text segment: the machine code
• data segment: binary representation of 
the data in the source file

• relocation information: identifies lines 
of code that need to be “handled”

• symbol table: list of this file’s labels 
and data that can be referenced

• debugging information



CS 61C L13 CALL (24) A Carle, Summer 2006 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o



CS 61C L13 CALL (25) A Carle, Summer 2006 © UCB

Link Editor/Linker (1/3)
• Input: Object Code, information tables
(e.g., foo.o for MIPS)

• Output: Executable Code
(e.g., a.out for MIPS)

• Combines several object (.o) files into 
a single executable (“linking”) 

• Enable Separate Compilation of files
• Changes to one file do not require 
recompilation of whole program

- Windows NT source is >40 M lines of code! 
• Link Editor name from editing the “links” 
in jump and link instructions



CS 61C L13 CALL (26) A Carle, Summer 2006 © UCB

Link Editor/Linker (2/3)
.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2



CS 61C L13 CALL (27) A Carle, Summer 2006 © UCB

Link Editor/Linker (3/3)

• Step 1: Take text segment from each 
.o file and put them together.

• Step 2: Take data segment from each 
.o file, put them together, and 
concatenate this onto end of text 
segments.

• Step 3: Resolve References
• Go through Relocation Table and handle 
each entry

• That is, fill in all absolute addresses



CS 61C L13 CALL (28) A Carle, Summer 2006 © UCB

Resolving References (1/2)

• Linker assumes first word of first text 
segment is at address 0x00000000.

• Linker knows:
• length of each text and data segment
• ordering of text and data segments

• Linker calculates:
• absolute address of each label to be 
jumped to (internal or external) and each 
piece of data being referenced



CS 61C L13 CALL (29) A Carle, Summer 2006 © UCB

Resolving References (2/2)

• To resolve references:
• search for reference (data or label) in all 
symbol tables

• if not found, search library files 
(for example, for printf)

• once absolute address is determined, fill 
in the machine code appropriately

• Output of linker: executable file 
containing text and data (plus header)



CS 61C L13 CALL (30) A Carle, Summer 2006 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o



CS 61C L13 CALL (31) A Carle, Summer 2006 © UCB

Loader (1/3)

• Input: Executable Code
(e.g., a.out for MIPS)

• Output: (program is run)
• Executable files are stored on disk.
• When one is run, loader’s job is to 
load it into memory and start it 
running.

• In reality, loader is the operating 
system (OS) 

• loading is one of the OS tasks



CS 61C L13 CALL (32) A Carle, Summer 2006 © UCB

Loader (2/3)
• So what does a loader do?
• Reads executable file’s header to 
determine size of text and data 
segments

• Creates new address space for 
program large enough to hold text and 
data segments, along with a stack 
segment

• Copies instructions and data from 
executable file into the new address 
space (this may be anywhere in 
memory)



CS 61C L13 CALL (33) A Carle, Summer 2006 © UCB

Loader (3/3)

• Copies arguments passed to the 
program onto the stack

• Initializes machine registers
• Most registers cleared, but stack pointer 
assigned address of 1st free stack 
location

• Jumps to start-up routine that copies 
program’s arguments from stack to 
registers and sets the PC

• If main routine returns, start-up routine 
terminates program with the exit system 
call



CS 61C L13 CALL (34) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒  Obj ⇒  Exe ⇒  Run 
#include <stdio.h>

int main (int argc, char *argv[]) {

int i;

int sum = 0;

for (i = 0; i <= 100; i = i + 1) 
sum = sum + i * i;

printf ("The sum from 0 .. 100 is %d\n", 
sum);

}



CS 61C L13 CALL (35) A Carle, Summer 2006 © UCB

Example: C ⇒ Asm ⇒  Obj ⇒  Exe ⇒  Run
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
j $ra
.data
.align 0
str:
.asciiz "The sum 
from 0 .. 100 is 
%d\n"

Where are
7 pseudo-
instructions?



CS 61C L13 CALL (36) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒  Exe ⇒  Run
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
j $ra
.data
.align 0
str:
.asciiz "The sum 
from 0 .. 100 is 
%d\n"

7 pseudo-
instructions
underlined



CS 61C L13 CALL (37) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒  Exe ⇒  Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101 
3c bne $1,$0, -10
40 lui $4, l.str
44 ori $4,$4,r.str 
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29) 
58 addiu $29,$29,32
5c jr $31

•Remove pseudoinstructions, assign addresses



CS 61C L13 CALL (38) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒  Exe ⇒  Run

• Example.o contains these tables:
• Symbol Table 

• Label Address
main: text+0x00000000 global
loop: text+0x00000018
str: data+0x00000000

• Relocation Information
• Address Instr. Type Dependency 
text+00040 lui l.str
text+00044 ori r.str
text+0004c jal printf



CS 61C L13 CALL (39) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒ Exe ⇒  Run

• Linker sees all the .o files.
• One of these (example.o) provides main 
and needs printf.

• Another (stdio.o) provides printf.

• 1) Linker decides order of text, data 
segments

• 2) This fills out the symbol tables
• 3) This fills out the relocation tables



CS 61C L13 CALL (40) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒ Exe ⇒  Run

• Linker first stage: 
• Set text= 0x0400 0000; data=0x1000 0000

• Symbol Table 
• Label Address
main: 0x04000000 global
loop: 0x04000018
str: 0x10000000

• Relocation Information
• Address Instr. Type Dependency 
text+0x0040 lui l.str
text+0x0044 ori r.str
text+0x004c jal printf



CS 61C L13 CALL (41) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒ Obj ⇒ Exe ⇒  Run

• Linker second stage: 
• Set text= 0x0400 0000; data=0x1000 0000

• Symbol Table 
• Label Address
main: 0x04000000 global
loop: 0x04000018
str: 0x10000000

• Relocation Information
• Address Instr. Type Dependency 
text+0x0040 lui l.str=0x1000
text+0x0044 ori r.str=0x0000
text+0x004c jal printf=04440000



CS 61C L13 CALL (42) A Carle, Summer 2006 © UCB

Example: C ⇒ Asm ⇒  Obj ⇒ Exe ⇒  Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101 
3c bne $1,$0, -10 
40 lui $4, 1000
44 ori $4,$4,0000
48 lw $5,24($29)
4c jal 01110000
50 add $2, $0, $0
54 lw $31,20($29) 
58 addiu $29,$29,32
5c jr $31

•Edit Addresses: start at 0x0400000



CS 61C L13 CALL (43) A Carle, Summer 2006 © UCB

Example: C ⇒  Asm ⇒  Obj ⇒ Exe ⇒  RunRun
0x004000 00100111101111011111111111100000
0x004004 10101111101111110000000000010100
0x004008 10101111101001000000000000100000
0x00400c 10101111101001010000000000100100
0x004010 10101111101000000000000000011000
0x004014 10101111101000000000000000011100
0x004018 10001111101011100000000000011100
0x00401c 10001111101110000000000000011000
0x004020 00000001110011100000000000011001
0x004024 00100101110010000000000000000001
0x004028 00101001000000010000000001100101
0x00402c 10101111101010000000000000011100
0x004030 00000000000000000111100000010010
0x004034 00000011000011111100100000100001
0x004038 00010100001000001111111111110111
0x00403c 10101111101110010000000000011000
0x004040 00111100000001000001000000000000
0x004044 10001111101001010000000000011000
0x004048 00001100000100000000000011101100
0x00404c 00100100100001000000010000110000
0x004050 10001111101111110000000000010100
0x004054 00100111101111010000000000100000
0x004058 00000011111000000000000000001000
0x00405c 00000000000000000001000000100001



CS 61C L13 CALL (44) A Carle, Summer 2006 © UCB

Peer Instruction 2

Which of the following instr. may 
need to be edited during link phase?

Loop: lui $at, 0xABCD
ori $a0,$at, 0xFEDC
jal add_link # B
bne $a0,$v0, Loop   # C

# A}



CS 61C L13 CALL (45) A Carle, Summer 2006 © UCB

Things to Remember (1/3)
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o



CS 61C L13 CALL (46) A Carle, Summer 2006 © UCB

Things to Remember (2/3)

• Compiler converts a single HLL file 
into a single assembly language file.

• Assembler removes 
pseudoinstructions, converts what it 
can to machine language, and creates 
a checklist for the linker (relocation 
table).  This changes each .s file into a 
.o file.

• Linker combines several .o files and 
resolves absolute addresses.

• Loader loads executable into memory 
and begins execution.



CS 61C L13 CALL (47) A Carle, Summer 2006 © UCB

Things to Remember 3/3
• Stored Program concept mean 
instructions just like data, so can take data 
from storage, and keep transforming it 
until load registers and jump to routine to 
begin execution
• Compiler ⇒ Assembler ⇒ Linker (⇒ Loader )

• Assembler does 2 passes to resolve 
addresses, handling internal forward 
references

• Linker enables separate compilation, 
libraries that need not be compiled, and 
resolves remaining addresses


