CS61c Summer 2014 Discussion 6 – Floating Point and Performance

July 10, 2014

1 Floating Point Numbers (IEEE Standard 754)

	Sign(S)	Exponent (E)	Fraction (F)
Single Precision	1 bit	8 bits	23 bits
Double Precision	1 bit	11 bits	52 bits

Floating Point value =
$$(-1)^S \times (1+F) \times 2^{E-bias}$$

• Special values

$\pm \mathbf{Zero}$	E = 0, F = 0	±Infinity	E = 255, F = 0
NaN	$E = 255, F \neq 0$	Denormalized numbers	$E = 0, F \neq 0$

1.1 Exercises

- 1. Convert the following decimal numbers into binary: 1.0, 2.5, 0.125, 0.666...
- 2. Convert the following numbers into hex using single precision floating point : 2.0, -9.5, 15.333..., $+\infty$.
- 3. Convert the following numbers from hex into decimal using single precision floating point: 0x0, 0xff9abcde, 0x41040000, 0xC0B40000

2 Performance

To measure CPU performance, we use CPU Time which only considers processor time.

• CPU Time = Instructions \times CPI \times Clock Cycle Time.

2.1 Exercises

1. Suppose that you were developing a software that contains the following mix of instructions, which processor is the best choice?

Operation	Frequency	A's CPI	B's CPI	C's CPI
ALU	30%	1	1	1
Store	30%	3	5	3
Load	20%	2	3	4
Branch	20%	3	2	2

- 2. You then find out that the processors have different clock speeds. A is a 1 Ghz processor, B is a 1.5 Ghz processor, and C is a 750 Mhz processor. Which one is the best choice?
- 3. You contact the manufactures about each processor and found out that they have different instruction sets, so then running your software takes a different number of instructions on each. You find out that A averages 1000 instructions, B averages 800 instructions and C averages 1200 instructions. Which one is the best now?