CS61c Summer 2014 Discussion 10 - Synchronous Digital Systems and Boolean Algebra
 July 23, 2014

1 Logic Gates

1. Label the following logic gates:

2. Convert the following to boolean expressions:
(a) NAND
(b) XOR
(c) XNOR
3. Create an AND gate using only NAND gates.
4. How many different two-input logic gates can there be? How many n-input logic gates?

2 State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

R2

3 Boolean Logic

- $A+\bar{A}=1$
- $0 B=0$
- $(A+B)(A+C)=A+B C$
- $1+A=1$
- $B \bar{B}=0$
- $\overline{\mathrm{AB}}=\bar{A}+\bar{B}$
- $A+A B=A$
- $A+\bar{A} B=A+B$
- $\overline{\mathrm{A}+\mathrm{B}}=\bar{A} \bar{B}$

1. Minimize the following boolean expressions:
(a) Standard: $(A+B)(A+\bar{B}) C$
(b) Grouping \& Extra Terms: $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} \bar{C}+A B C+A \bar{B} C$
(c) DeMorgan's: $\overline{\mathrm{A}(\bar{B} \bar{C}+B C)}$
