
CS61C Summer 2014 Discussion 13 – Pipelining and VM
!

Pipelining Exercises, Continued !
1. Spot all data dependencies (including ones that do not lead to stalls). Draw arrows from

the stages where data is made available, directed to where it is needed. Circle the
involved registers in the instructions. Assume no forwarding. One dependency has been
drawn for you. !

 time ->

addi $t0 $t1 100 F D X M W

lw $t2 4($t0) F D X M W !
add $t3 $t1 $t2 F D X M W !
sw $t3 8($t0) F D X M W !
lw $t5 0($t6) F D X M W !
or $t5 $t0 $t3 F D X M W !
2. Redraw the arrows for the above question assuming that our hardware provides

forwarding. !
 time -> !
addi $t0 $t1 100 F D X M W !
lw $t2 4($t0) F D X M W !
add $t3 $t1 $t2 F D X M W !
sw $t3 8($t0) F D X M W !
lw $t5 0($t6) F D X M W !
or $t5 $t0 $t3 F D X M W !!
3. How many stalls will we have to add to the pipeline to resolve the hazards in Exercise 4?

How many stalls to resolve the hazards in Exercise 5? !!!!!!!!!!!!!!
! 1

CS61C Summer 2014 Discussion 13 – Pipelining and VM
!

Virtual Memory Overview

Virtual address (VA): What your program uses

Physical address (PA): What actually determines where in memory to go

With 4 KiB pages and byte addresses, 2^(page offset bits) = 4096, so page offset bits = 12.

!
The Big Picture: Logical Flow
Translate VA to PA using the TLB and Page Table. Then
use PA to access memory as the program intended.

Pages
A chunk of memory or disk with a set size. Addresses
in the same virtual page get mapped to addresses in
the same physical page. The page table determines
the mapping. !
The Page Table

Each stored row of the page table is called a page table entry (the grayed section is the first
page table entry). The page table is stored in memory; the OS sets a register telling the
hardware the address of the first entry of the page table. The processor updates the “page
dirty” in the page table: “page dirty” bits are used by the OS to know whether updating a
page on disk is necessary. Each process gets its own page table.

• Protection Fault--The page table entry for a virtual page has permission bits that prohibit
the requested operation

• Page Fault--The page table entry for a virtual page has its valid bit set to false. The entry
is not in memory. !

Virtual Page Number Page Offset

Physical Page Number Page Offset

Index = Virtual Page Number  
(not stored)

Page
Valid

Page
Dirty

Permission Bits
(read, write, ...)

Physical Page Number

0

1

2

…

(Max virtual page number)

! 2

CS61C Summer 2014 Discussion 13 – Pipelining and VM
!

The Translation Lookaside Buffer (TLB)
A cache for the page table. Each block is a single page table entry. If an entry is not in the
TLB, it’s a TLB miss. Assuming fully associative:

The Big Picture Revisited

!

Exercises

What are three specific benefits of using virtual memory? [there are many] !!!
What should happen to the TLB when a new value is loaded into the page table address
register? !!
x86 has an "accessed" bit in each page table entry, which is like the dirty bit but set whenever
a page is used (load or store). Why is this helpful when using memory as a cache for disk? !!!
Fill this table out!

TLB Entry
Valid

Tag = Virtual Page Number Page Table Entry

Page Dirty Permission Bits Physical Page Number

… … … … …

Virtual Address
Bits

Physical
Address Bits

Page Size VPN Bits PPN Bits Bits per row of PT (4
extra bits)

32 32 16KB

32 26 13

32 21 21

32KB 25 25

64 48 28

! 3

