Virtual Memory

Consider a call to the following MIPS code (no delay slots) with the given initial page table. Assume that pages are 4 KiB and that all page faults (but not protection faults) can be serviced by the OS without evicting pages. $\$ \mathrm{sp}$ is initially 0×6004, $\$ \mathrm{ra}$ is initially 0×1040, and $\$ \mathrm{aO}$ is initially 0×1.

MIPS
V.A.

Instructions
0×2004
0×2008
$0 \times 200 \mathrm{C}$
0×2010
0×2014
0×2018
$0 \times 201 \mathrm{C}$
0×2020

```
Foo: addiu $sp, $sp, -4
sw $ra, 0($sp)
beq $a0, $0, Skip
addiu $a0, $a0, -1
jal Foo
Skip: lw $ra, 0($sp)
addiu $sp, $sp, 4
jr $ra
```

Valid	Dirty	A. R.	P.P.N.
0	0	None	4
1	0	Read, Exec	5
0	0	Read, Exec	1
0	0	None	1
0	0	Read, Write	12
1	0	Read, Write	3
1	0	Read, Write	2
\ldots	\ldots	\ldots	\ldots

2. Assuming that we don't have a TLB, (or that all the TLB was flushed), what will be in the page table after this function is completely executed?

3. Suppose $\$ \mathrm{aO}$ were initially $0 \times \mathrm{xCO}$ instead of 0×1, what other exceptions can occur?

MapReduce

Use pseudocode to write MapReduce functions necessary to solve the problems below. Also, make sure to fill out the correct data types. Some tips:

- The input to each MapReduce job is given by the signature of the map() function
- The function emit(key k, value v) outputs the key-value pair (k, v)
- You may use the for(var in list) syntax to iterate through iterable types, or use the next() and hasNext() methods of iterable types
- You may also use sum(), length(), or sort() on collections of values
- Data types you may use are Integer, Float, String, List, and any custom data types you might define yourself

1. Given a set of classes that students have taken, output each student's name and total GPA.

Declare any custom data types here:

CourseData:
Integer courseID
Float studentGrade // a number form 0-4
map(String student, CourseData value): reduce(___ key, Iterable<__ > values):
2. Compute the list of mutual friends between each pair of friends in a social network. Each person on the network is identified by a unique Integer ID. You can use an intersection(list1, list2) method that returns a list that is the intersection of list1 and list2.

Declare any custom data types here:
map(Integer personID, List<Integer> friendIDs):
reduce(

Iterable< key,
\qquad > values):
3. Given a set of coins and each coin's owner, compute the number of coins of each denomination that each person has.

Declare any custom data types here:

map(String person, String coinType):

Iterable<__ > values):
4. Using the output of the previous MapReduce job, compute the amount of money each person has. The function valueOfCoin(String coinType) returns a float corresponding to the dollar value of the given coin.

