
CS 61C Summer 2014 Discussion 14 VM / MapReduce

Virtual Memory!!
Consider a call to the following MIPS code (no delay slots) with the given initial page table.
Assume that pages are 4KiB and that all page faults (but not protection faults) can be serviced
by the OS without evicting pages. $sp is initially 0x6004, $ra is initially 0x1040, and $a0 is
initially 0x1.!!
MIPS
V.A. Instructions
0x2004 Foo: addiu $sp, $sp, -4
0x2008 sw $ra, 0($sp)
0x200C beq $a0, $0, Skip
0x2010 addiu $a0, $a0, -1
0x2014 jal Foo
0x2018 Skip: lw $ra, 0($sp)
0x201C addiu $sp, $sp, 4
0x2020 jr $ra !
1. Where will page faults occur in this function's execution?!!
On the first instruction executed. Since 0x2004 corresponds to virtual page 2, which is not valid,
a page fault will be triggered as a result of the instruction fetch. No other page faults will occur.!!
2. Assuming that we don’t have a TLB, (or that all the TLB was flushed), what will be in the

page table after this function is completely executed? !

!
3. Suppose $a0 were initially 0xC00 instead of 0x1, what other exceptions can occur?!!
Deep into the recursion $sp would end up being 0x4FFC when executing the instruction at
0x2008, which would cause a page fault for virtual page 4. Later, $sp would be 0x3FFC, which
would cause a protection fault for virtual page 3.!!!!!

Valid Dirty A. R. P.P.N.

0 0 None 4

1 0 Read, Exec 5

0 0 Read, Exec 1

0 0 None 1

0 0 Read, Write 12

1 0 Read, Write 3

1 0 Read, Write 2

...

Valid Dirty A. R. P.P.N.

0 0 None 4

1 0 Read, Exec 5

1 0 Read, Exec ##

0 0 None 1

0 0 Read, Write 12

1 1 Read, Write 3

1 1 Read, Write 2

...

CS 61C Summer 2014 Discussion 14 VM / MapReduce

MapReduce!
Use pseudocode to write MapReduce functions necessary to solve the problems below. Also,
make sure to fill out the correct data types. Some tips:!

• The input to each MapReduce job is given by the signature of the map() function!
• The function emit(key k, value v) outputs the key-value pair (k, v)!
• You may use the for(var in list) syntax to iterate through iterable types, or use the next()

and hasNext() methods of iterable types!
• You may also use sum(), length(), or sort() on collections of values!
• Data types you may use are Integer, Float, String, List, and any custom data types you

might define yourself!!
1. Given a set of classes that students have taken, output each student's name and total GPA.!!

!
2. Compute the list of mutual friends between each pair of friends in a social network. Each

person on the network is identified by a unique Integer ID. You can use an
intersection(list1, list2) method that returns a list that is the intersection of list1 and list2.!!

!
3. Given a set of coins and each coin's owner, compute the number of coins of each

denomination that each person has.!!

!

Declare any custom data types here:!
CourseData:!
 Integer courseID!
 Float studentGrade // a number form 0-4

map(String student, CourseData value):!
 emit(student, value.studentGrade)

reduce(String key, !
 Iterable<Float> values):!
 emit(key, sum(values) / length(values))

Declare any custom data types here:!
FriendPair:!
 Integer friend1!
 Integer friend2

map(Integer personID,!
 List<Integer> friendIDs):!
 for(friendID in friendIDs):!
 emit(FriendPair(sort(friendID, personID)),!
 friendIDs)

reduce(FriendPair key, !
 Iterable<List<Integer>> values):!
 emit(key, intersection(values.next(),!
 values.next()))

Declare any custom data types here:!
CoinPair:!
 String person!
 String coinType

map(String person, String coinType):!
 emit(CoinPair(person, coinType), 1)

reduce(CoinPair key, !
 Iterable<Integer> values):!
 emit(key, sum(values))

CS 61C Summer 2014 Discussion 14 VM / MapReduce

4. Using the output of the previous MapReduce job, compute the amount of money each
person has. The function valueOfCoin(String coinType) returns a float corresponding to
the dollar value of the given coin.!!

map(CoinPair key,!
 Integer value):!
 emit(key.person,!
 valueOfCoin(key.coinType) * value)

reduce(String key, !
 Iterable<Float> values):!
 emit(key, sum(values))

