
Instructor:  Alan Christopher
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CS 61C: Great Ideas in 
Computer Architecture

Direct-Mapped Caches,
Set Associative Caches,

Cache Performance



Great Idea #3: Principle of Locality/
Memory Hierarchy
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Extended Review of Last 
Lecture

• Why have caches?
– Intermediate level between CPU and memory
– In-between in size, cost, and speed

• Memory (hierarchy, organization, structures) set up to exploit 
temporal and spatial locality

– Temporal:  If accessed, will access again soon
– Spatial:  If accessed, will access others around it

• Caches hold a subset of memory (in blocks)
– We are studying how they are designed for fast and efficient 

operation (lookup, access, storage)
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Extended Review of Last 
Lecture

• Fully Associative Caches:
– Every block can go in any slot

● Use random or LRU replacement policy when cache 
full

– Memory address breakdown (on request)
● Tag field is identifier (which block is currently in slot)
● Offset field indexes into block

– Each cache slot holds block data, tag, valid bit, 
and dirty bit (dirty bit is only for write-back)

● The whole cache maintains LRU bits
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Extended Review of Last 
Lecture

• Cache read and write policies:
– Affect consistency of data between cache and 

memory
– Write-back vs. write-through
– Write allocate vs. no-write allocate

• On memory access (read or write):
– Look at ALL cache slots in parallel
– If Valid bit is 0, then ignore
– If Valid bit is 1 and Tag matches, then use that 

data
● write, set Dirty bit if write-back
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Extended Review of Last Lecture

• Fully associative cache layout
– 8-bit address space, 32-byte cache with 8-byte blocks
– LRU replacement (5 bits), write-back and write allocate
– Offset – 3 bits, Tag – 5 bits

• Each slot has 71 bits; cache has 4*71+5 = 289 bits
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V D Tag 000 001 010 011 100 101 110 111
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

Offset

Slot
0
1
2
3

cache size (C) block size (K)
256 B address space

Need dirty bit

LRU
XXXXX



Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance

7/10/2014 Summer 2014 -- Lecture #11 7



Direct-Mapped Caches (1/3)

• Each memory block is mapped to exactly 
one slot in the cache (direct-mapped)

– Every block has only one “home”
– Use hash function to determine which slot

• Comparison with fully associative
– Check just one slot for a block (faster!)
– No replacement policy necessary
– Access pattern may leave empty slots in 

cache
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Direct-Mapped Caches (2/3)

• Offset field remains the same as before
• Recall:  blocks consist of adjacent bytes

– Do we want adjacent blocks to map to same slot?
– Index field:  Apply hash function to block address to 

determine which slot the block goes in
● (block address) modulo (# of blocks in the cache)

• Tag field maintains same function (identifier), 
but is now shorter
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• Memory address fields:

• Meaning of the field sizes:
– O bits  ↔  2O bytes/block = 2O-2 words/block
– I bits  ↔  2I slots in cache = cache size / block 

size
– T bits = A – I – O, where A = # of address bits 

(A = 32 here)

TIO Address Breakdown
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Tag Index Offset
31 0

T bits I bits O bits



Direct-Mapped Caches (3/3)

• What’s actually in the cache?
– Block of data (8 × K = 8 × 2O bits)
– Tag field of address as identifier (T bits)
– Valid bit (1 bit)
– Dirty bit (1 bit if write-back)
– No replacement management bits!

• Total bits in cache = # slots × (8×K + T + 1 + 1)
               = 2I × (8×2O + T + 1 + 1) bits
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DM Cache Example (1/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block 

size of 1 word, cache size of 4 words, 
write-through

• TIO Breakdown:
– 1 word = 4 bytes, so O = log2(4) = 2
– Cache size / block size = 4, so I = log2(4) = 2
– A = log2(64) = 6 bits, so T = 6 – 2 – 2 = 2

• Bits in cache = 22 × (8×22 + 2 + 1) = 140 
bits
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XXXXXXMemory 
Addresses: Block 

address



DM Cache Example (2/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block 

size of 1 word, cache size of 4 words, 
write-through

– Offset – 2 bits, Index – 2 bits, Tag – 2 bits

• 35 bits per index/slot, 140 bits to implement
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V Tag 00 01 10 11

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

Index

00

01

10

11

Offset



DM Cache Example (3/5)
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Main Memory:
Which blocks 
map to each row 
of the cache?
(see colors)

On a memory 
request:
(let’s say 0010112)

1) Take Index field (10)

2) Check if Valid bit is 
true in that row of cache

3) If valid, then check if 
Tag matches

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

00

01
10
11

Cache:

Tag DataValidIndex

Cache slots exactly 
match the Index field

Which blocks 
map to each row 
of the cache?
(see colors)

Main Memory shown 
in blocks, so offset 
bits not shown (x’s)



DM Cache Example (4/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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0

4

miss

miss

Starting with a cold cache:

0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

2 hit

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

8miss
1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10

11



DM Cache Example (5/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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20

0

miss

miss

Starting with a cold cache:

● 8 requests, 6 misses – last slot was never used!

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

1 01 M[16] M[17] M[18] M[19]

1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

16 miss

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

2 hit

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

M  H   M   M



Worst-Case for 
Direct-Mapped

• Cold DM $ that holds 4 1-word blocks
• Consider the memory accesses:  0, 16, 0, 16,...

• HR of 0%
– Ping pong effect:  alternating requests that map 

into the same cache slot

• Does fully associative have this problem?
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0 16 0   Miss    Miss    Miss
00      M[0-3] 00      M[0-3] 01    M[16-19]

. . .



Comparison So Far

• Fully associative
– Block can go into any slot
– Must check ALL cache slots on request (“slow”)
– TO breakdown (i.e. I = 0 bits)
– “Worst case” still fills cache (more efficient)

• Direct-mapped
– Block goes into one specific slot (set by Index field)
– Only check ONE cache slot on request (“fast”)
– TIO breakdown
– “Worst case” may only use 1 slot (less efficient)
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Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance
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Administrivia

• Proj1 still due Sunday
– My OH tomorrow “go until they finish (sorta)”

● As long as there's a student with pertinent 
questions I'll hang around.

● I won't stay later than 7pm (go to Andrew's 
office hours at that point)

• HW4 will be released Friday, due next Sunday
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Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance
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Set Associative Caches

• Compromise!
– More flexible than DM, more structured than FA

• N-way set-associative:  Divide $ into sets, each 
of which consists of N slots

– Memory block maps to a set determined by Index 
field and is placed in any of the N slots of that set

– Call N the associativity
– New hash function: 

(block address) modulo (# sets in the cache)
– Replacement policy applies to every set
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Effect of Associativity on TIO (1/2)

• Here we assume a cache of fixed size (C), 
fixed block size (K)

• Offset: Points to a byte in a block (same as 
before)

• Index:  Instead of pointing to a slot, now 
points to a set, so I = log2(C/K/N)

– Fully associative (1 set):  0 Index bits!
– Direct-mapped (N = 1):  max Index bits
– Set associative:  somewhere in-between

• Tag:  Remaining identifier bits (T = A – I – O)
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Effect of Associativity on TIO (2/2)

• For a fixed-size cache, each increase by a factor of two in 
associativity doubles the number of blocks per set (i.e. 
the number of slots) and halves the number of sets – 
decreasing the size of the Index by 1 bit and increasing 
the size of the Tag by 1 bit
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OffsetIndexTag

Decreasing associativity

Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte in the block



Example: Eight-Block Cache Configs
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• Total size of $ = 
# sets × associativity

• For fixed $ size, 
associativity ↑ means # 
sets ↓ and slots per set ↑ 

• With 8 blocks, an 8-way 
set associative $ is same 
as a fully associative $



Block Placement Schemes
• Place memory block 12 in a cache that holds 8 blocks

• Fully associative:  Can go in any of the slots (all 1 set)
• Direct-mapped:  Can only go in slot (12 mod 8) = 4
• 2-way set associative:  Can go in either slot of set 

(12 mod 4) = 0
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SA Cache Example (1/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 

1-word blocks, 4-word cache, 
write-through

• How many sets?
– C/K/N = 4/1/2 = 2 sets

• TIO Breakdown:
– O = log2(4) = 2, I = log2(2) = 1, 

– T = 6 – 1 – 2 = 3
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XXXXXXMemory 
Addresses: Block 

address



SA Cache Example (2/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word 

blocks, 4-word cache, write-through
– Offset – 2 bits, Index – 1 bit, Tag – 3 bits

• 36 bits per slot, 36*2+1 = 73 bits per set,
2*73 = 146 bits to implement
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V Tag 00 01 10 11

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

Index

0

1

0

1

Offset

0

1

LRU
X

LRU
X



SA Cache Example (3/5)

29

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

0

Cache:
Tag DataVSlot

1

0
1

Set

0

1

Main 
Memory:

Each block maps 
into one set 
(either slot)
(see colors)

On a memory 
request:
(let’s say 001011two)

1) Take Index field (0)

2) For EACH slot in 
set, check valid bit,
then compare Tag

Set numbers exactly 
match the Index field

Main Memory shown 
in blocks, so offset 
bits not shown (x’s)



SA Cache Example (4/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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0

4

miss

miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

2 hit

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

8miss
1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1



SA Cache Example (5/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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20

0

miss

miss

Starting with a cold cache:

● 8 requests, 6 misses

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

1 010 M[16] M[17] M[18] M[19]

1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

16miss

1 010 M[16]M[17]M[18]M[19]
1 000 M[0] M[1] M[2] M[3]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20]M[21]M[22]M[23]

2 hit

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

M   H  M  M



Worst Case for Set 
Associative

• Worst case for DM was repeating pattern of 2 
into same cache slot (HR = 0/n)

– Set associative for N > 1:  HR = (n-2)/n

• Worst case for N-way SA with LRU?
– Repeating pattern of at least N+1 that maps 

into same set
– Back to HR = 0:

7/10/2014 Summer 2014 -- Lecture #11 32

000    M[0-3]
001    M[8-11]

0, 8, 16, 0, 8, …
M MM

010    M[16-19]
000    M[0-3]

M
001    M[8-11]

M



33

Question:  What is the TIO breakdown 
for the following cache?

• 32-bit address space
• 32 KiB 4-way set associative cache
• 8 word blocks

21  8  3(B)
19  8  5(G)
19 10  3(P)
17 10  5(Y)

T  I     O



Technology Break
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Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance
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Cache Performance

• Two things hurt the performance of a cache:
– Miss rate and miss penalty
– Average Memory Access Time (AMAT):  average time to access 

memory considering both hits and misses
AMAT = Hit time + Miss rate × Miss penalty
(abbreviated AMAT = HT + MR × MP)

• Goal 1:  Examine how changing the different cache 
parameters affects our AMAT

• Goal 2:  Examine how to optimize your code for better 
cache performance
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AMAT Example

• Processor specs: 200 ps clock, MP of 50 
clock cycles, MR of 0.02 misses/instruction, 
and HT of 1 clock cycle

AMAT = ???
• Which improvement would be best?

– 190 ps clock
– MP of 40 clock cycles
– MR of 0.015 misses/instruction

7/10/2014 Summer 2014 -- Lecture #11 37

380 ps

360 ps

350 ps

1 + 0.02 × 50 = 2 clock cycles = 400 ps



Cache Parameter Effects

• What is the potential impact of much 
larger cache on AMAT? (same block size)

– Increase HR
– Longer HT:  smaller is faster
– At some point, increase in hit time for a 

larger cache may overcome the 
improvement in hit rate, yielding a 
decrease in performance

● Effect on TIO?  Bits in cache?  Cost?
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Effect of Cache Performance on CPI

• Recall:  CPU Performance
CPU Time = Instructions × CPI × Clock Cycle Time

• Include memory accesses in CPI:
CPIstall = CPIbase + Average Memory-stall Cycles

CPU Time = IC × CPIstall × CC

• Simplified model for memory-stall cycles:

Memory-stall cycles
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(CC)(IC)



CPI Example

• Processor specs:  CPIbase of 2, a 100 
cycle MP, 36% load/store instructions, and 
2% I$ and 4% D$ MRs

– How many times per instruction do we 
access the I$?  The D$?

– MP is assumed the same for both I$ and 
D$

– Memory-stall cycles will be sum of stall 
cycles for both I$ and D$
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CPI Example

• Processor specs:  CPIbase of 2, a 100 cycle MP, 36% 
load/store instructions, and 2% I$ and 4% D$ MRs

– Memory-stall cycles 
= (100% × 2% + 36% × 4%) × 100 = 3.44

– CPIstall = 2 + 3.44 = 5.44 (more than 2 x CPIbase!)
What if the CPIbase is reduced to 1?

• What if the D$ miss rate went up by 1%?
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I$ D$



Impacts of Cache 
Performance

CPIstall = CPIbase + Memory-stall Cycles

• Relative penalty of cache performance 
increases as processor performance improves 
(faster clock rate and/or lower CPIbase)

– Relative contribution of CPIbase and memory-stall 
cycles to CPIstall 

– Memory speed unlikely to improve as fast as 
processor cycle time

• What can we do to improve cache 
performance?
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Sources of Cache Misses: The 3Cs

• Compulsory: (cold start or process 
migration, 1st reference)

– First access to block impossible to avoid; 
Effect is small for long running programs

• Capacity:
– Cache cannot contain all blocks accessed by 

the program

• Conflict: (collision)
– Multiple memory locations mapped to the 

same cache location
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The 3Cs: Design Solutions

• Compulsory:
– Increase block size (increases MP; too 

large blocks could increase MR)

• Capacity:
– Increase cache size (may increase HT)

• Conflict:
– Increase cache size
– Increase associativity (may increase HT)
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Summary

• Set associativity determines flexibility of block 
placement

– Fully associative:  blocks can go anywhere
– Direct-mapped:  blocks go in one specific location
– N-way:  cache split into sets, each of which have n slots 

to place memory blocks

• Cache Performance
– AMAT = HT + MR × MP
– CPU time = IC × CPIstall × CC 

            = IC × (CPIbase + Memory-stall cycles) × CC
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