
Instructor: Alan Christopher

7/10/2014 Summer 2014 -- Lecture #11 1

CS 61C: Great Ideas in
Computer Architecture

Direct-Mapped Caches,
Set Associative Caches,

Cache Performance

Great Idea #3: Principle of Locality/
Memory Hierarchy

7/11/2013 Summer 2013 -- Lecture #11 2

Extended Review of Last
Lecture

• Why have caches?
– Intermediate level between CPU and memory
– In-between in size, cost, and speed

• Memory (hierarchy, organization, structures) set up to exploit
temporal and spatial locality

– Temporal: If accessed, will access again soon
– Spatial: If accessed, will access others around it

• Caches hold a subset of memory (in blocks)
– We are studying how they are designed for fast and efficient

operation (lookup, access, storage)

7/10/2014 Summer 2014 -- Lecture #11 3

Extended Review of Last
Lecture

• Fully Associative Caches:
– Every block can go in any slot

● Use random or LRU replacement policy when cache
full

– Memory address breakdown (on request)
● Tag field is identifier (which block is currently in slot)
● Offset field indexes into block

– Each cache slot holds block data, tag, valid bit,
and dirty bit (dirty bit is only for write-back)

● The whole cache maintains LRU bits

7/10/2014 Summer 2014 -- Lecture #11 4

Extended Review of Last
Lecture

• Cache read and write policies:
– Affect consistency of data between cache and

memory
– Write-back vs. write-through
– Write allocate vs. no-write allocate

• On memory access (read or write):
– Look at ALL cache slots in parallel
– If Valid bit is 0, then ignore
– If Valid bit is 1 and Tag matches, then use that

data
● write, set Dirty bit if write-back

7/10/2014 Summer 2014 -- Lecture #11 5

Extended Review of Last Lecture

• Fully associative cache layout
– 8-bit address space, 32-byte cache with 8-byte blocks
– LRU replacement (5 bits), write-back and write allocate
– Offset – 3 bits, Tag – 5 bits

• Each slot has 71 bits; cache has 4*71+5 = 289 bits

7/10/2014 Summer 2014 -- Lecture #11 6

V D Tag 000 001 010 011 100 101 110 111
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
X X XXXXX 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

Offset

Slot
0
1
2
3

cache size (C) block size (K)
256 B address space

Need dirty bit

LRU
XXXXX

Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance

7/10/2014 Summer 2014 -- Lecture #11 7

Direct-Mapped Caches (1/3)

• Each memory block is mapped to exactly
one slot in the cache (direct-mapped)

– Every block has only one “home”
– Use hash function to determine which slot

• Comparison with fully associative
– Check just one slot for a block (faster!)
– No replacement policy necessary
– Access pattern may leave empty slots in

cache

7/10/2014 Summer 2014 -- Lecture #11 8

Direct-Mapped Caches (2/3)

• Offset field remains the same as before
• Recall: blocks consist of adjacent bytes

– Do we want adjacent blocks to map to same slot?
– Index field: Apply hash function to block address to

determine which slot the block goes in
● (block address) modulo (# of blocks in the cache)

• Tag field maintains same function (identifier),
but is now shorter

7/10/2014 Summer 2014 -- Lecture #11 9

• Memory address fields:

• Meaning of the field sizes:
– O bits ↔ 2O bytes/block = 2O-2 words/block
– I bits ↔ 2I slots in cache = cache size / block

size
– T bits = A – I – O, where A = # of address bits

(A = 32 here)

TIO Address Breakdown

7/10/2014 Summer 2014 -- Lecture #11 10

Tag Index Offset
31 0

T bits I bits O bits

Direct-Mapped Caches (3/3)

• What’s actually in the cache?
– Block of data (8 × K = 8 × 2O bits)
– Tag field of address as identifier (T bits)
– Valid bit (1 bit)
– Dirty bit (1 bit if write-back)
– No replacement management bits!

• Total bits in cache = # slots × (8×K + T + 1 + 1)
 = 2I × (8×2O + T + 1 + 1) bits

7/10/2014 Summer 2014 -- Lecture #11 11

DM Cache Example (1/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block

size of 1 word, cache size of 4 words,
write-through

• TIO Breakdown:
– 1 word = 4 bytes, so O = log2(4) = 2
– Cache size / block size = 4, so I = log2(4) = 2
– A = log2(64) = 6 bits, so T = 6 – 2 – 2 = 2

• Bits in cache = 22 × (8×22 + 2 + 1) = 140
bits

7/10/2014 Summer 2014 -- Lecture #11 12

XXXXXXMemory
Addresses: Block

address

DM Cache Example (2/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block

size of 1 word, cache size of 4 words,
write-through

– Offset – 2 bits, Index – 2 bits, Tag – 2 bits

• 35 bits per index/slot, 140 bits to implement
7/10/2014 Summer 2014 -- Lecture #11 13

V Tag 00 01 10 11

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

Index

00

01

10

11

Offset

DM Cache Example (3/5)

7/10/2014 Summer 2014 -- Lecture #11 14

Main Memory:
Which blocks
map to each row
of the cache?
(see colors)

On a memory
request:
(let’s say 0010112)

1) Take Index field (10)

2) Check if Valid bit is
true in that row of cache

3) If valid, then check if
Tag matches

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

00

01
10
11

Cache:

Tag DataValidIndex

Cache slots exactly
match the Index field

Which blocks
map to each row
of the cache?
(see colors)

Main Memory shown
in blocks, so offset
bits not shown (x’s)

DM Cache Example (4/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/10/2014 Summer 2014 -- Lecture #11 15

0

4

miss

miss

Starting with a cold cache:

0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

2 hit

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

8miss
1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10

11

DM Cache Example (5/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/10/2014 Summer 2014 -- Lecture #11 16

20

0

miss

miss

Starting with a cold cache:

● 8 requests, 6 misses – last slot was never used!

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

1 01 M[16] M[17] M[18] M[19]

1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

16 miss

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]

1 00 M[8] M[9] M[10] M[11]

0 00 0x?? 0x?? 0x?? 0x??

2 hit

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

M H M M

Worst-Case for
Direct-Mapped

• Cold DM $ that holds 4 1-word blocks
• Consider the memory accesses: 0, 16, 0, 16,...

• HR of 0%
– Ping pong effect: alternating requests that map

into the same cache slot

• Does fully associative have this problem?

7/10/2014 Summer 2014 -- Lecture #11 17

0 16 0 Miss Miss Miss
00 M[0-3] 00 M[0-3] 01 M[16-19]

. . .

Comparison So Far

• Fully associative
– Block can go into any slot
– Must check ALL cache slots on request (“slow”)
– TO breakdown (i.e. I = 0 bits)
– “Worst case” still fills cache (more efficient)

• Direct-mapped
– Block goes into one specific slot (set by Index field)
– Only check ONE cache slot on request (“fast”)
– TIO breakdown
– “Worst case” may only use 1 slot (less efficient)

7/10/2014 Summer 2014 -- Lecture #11 18

Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance

7/10/2014 Summer 2014 -- Lecture #11 19

Administrivia

• Proj1 still due Sunday
– My OH tomorrow “go until they finish (sorta)”

● As long as there's a student with pertinent
questions I'll hang around.

● I won't stay later than 7pm (go to Andrew's
office hours at that point)

• HW4 will be released Friday, due next Sunday

7/10/2014 Summer 2014 -- Lecture #11 20

Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance

7/10/2014 Summer 2014 -- Lecture #11 21

Set Associative Caches

• Compromise!
– More flexible than DM, more structured than FA

• N-way set-associative: Divide $ into sets, each
of which consists of N slots

– Memory block maps to a set determined by Index
field and is placed in any of the N slots of that set

– Call N the associativity
– New hash function:

(block address) modulo (# sets in the cache)
– Replacement policy applies to every set

7/10/2014 Summer 2014 -- Lecture #11 22

Effect of Associativity on TIO (1/2)

• Here we assume a cache of fixed size (C),
fixed block size (K)

• Offset: Points to a byte in a block (same as
before)

• Index: Instead of pointing to a slot, now
points to a set, so I = log2(C/K/N)

– Fully associative (1 set): 0 Index bits!
– Direct-mapped (N = 1): max Index bits
– Set associative: somewhere in-between

• Tag: Remaining identifier bits (T = A – I – O)

7/10/2014 Summer 2014 -- Lecture #11 23

Effect of Associativity on TIO (2/2)

• For a fixed-size cache, each increase by a factor of two in
associativity doubles the number of blocks per set (i.e.
the number of slots) and halves the number of sets –
decreasing the size of the Index by 1 bit and increasing
the size of the Tag by 1 bit

7/10/2014 Summer 2014 -- Lecture #11 24

OffsetIndexTag

Decreasing associativity

Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte in the block

Example: Eight-Block Cache Configs

7/10/2014 Summer 2014 -- Lecture #11 25

• Total size of $ =
sets × associativity

• For fixed $ size,
associativity ↑ means #
sets ↓ and slots per set ↑

• With 8 blocks, an 8-way
set associative $ is same
as a fully associative $

Block Placement Schemes
• Place memory block 12 in a cache that holds 8 blocks

• Fully associative: Can go in any of the slots (all 1 set)
• Direct-mapped: Can only go in slot (12 mod 8) = 4
• 2-way set associative: Can go in either slot of set

(12 mod 4) = 0

7/10/2014 Summer 2014 -- Lecture #11 26

SA Cache Example (1/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses,

1-word blocks, 4-word cache,
write-through

• How many sets?
– C/K/N = 4/1/2 = 2 sets

• TIO Breakdown:
– O = log2(4) = 2, I = log2(2) = 1,

– T = 6 – 1 – 2 = 3

7/10/2014 Summer 2014 -- Lecture #11 27

XXXXXXMemory
Addresses: Block

address

SA Cache Example (2/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word

blocks, 4-word cache, write-through
– Offset – 2 bits, Index – 1 bit, Tag – 3 bits

• 36 bits per slot, 36*2+1 = 73 bits per set,
2*73 = 146 bits to implement

7/10/2014 Summer 2014 -- Lecture #11 28

V Tag 00 01 10 11

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

Index

0

1

0

1

Offset

0

1

LRU
X

LRU
X

SA Cache Example (3/5)

29

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

0

Cache:
Tag DataVSlot

1

0
1

Set

0

1

Main
Memory:

Each block maps
into one set
(either slot)
(see colors)

On a memory
request:
(let’s say 001011two)

1) Take Index field (0)

2) For EACH slot in
set, check valid bit,
then compare Tag

Set numbers exactly
match the Index field

Main Memory shown
in blocks, so offset
bits not shown (x’s)

SA Cache Example (4/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/10/2014 Summer 2014 -- Lecture #11 30

0

4

miss

miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

2 hit

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

8miss
1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

SA Cache Example (5/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/10/2014 Summer 2014 -- Lecture #11 31

20

0

miss

miss

Starting with a cold cache:

● 8 requests, 6 misses

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

1 010 M[16] M[17] M[18] M[19]

1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

16miss

1 010 M[16]M[17]M[18]M[19]
1 000 M[0] M[1] M[2] M[3]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20]M[21]M[22]M[23]

2 hit

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]

1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

M H M M

Worst Case for Set
Associative

• Worst case for DM was repeating pattern of 2
into same cache slot (HR = 0/n)

– Set associative for N > 1: HR = (n-2)/n

• Worst case for N-way SA with LRU?
– Repeating pattern of at least N+1 that maps

into same set
– Back to HR = 0:

7/10/2014 Summer 2014 -- Lecture #11 32

000 M[0-3]
001 M[8-11]

0, 8, 16, 0, 8, …
M MM

010 M[16-19]
000 M[0-3]

M
001 M[8-11]

M

33

Question: What is the TIO breakdown
for the following cache?

• 32-bit address space
• 32 KiB 4-way set associative cache
• 8 word blocks

21 8 3(B)
19 8 5(G)
19 10 3(P)
17 10 5(Y)

T I O

Technology Break

7/10/2014 34Summer 2014 -- Lecture #11

Agenda

• Direct-Mapped Caches
• Administrivia
• Set Associative Caches
• Cache Performance

7/10/2014 Summer 2014 -- Lecture #11 35

Cache Performance

• Two things hurt the performance of a cache:
– Miss rate and miss penalty
– Average Memory Access Time (AMAT): average time to access

memory considering both hits and misses
AMAT = Hit time + Miss rate × Miss penalty
(abbreviated AMAT = HT + MR × MP)

• Goal 1: Examine how changing the different cache
parameters affects our AMAT

• Goal 2: Examine how to optimize your code for better
cache performance

7/10/2014 Summer 2014 -- Lecture #11 36

AMAT Example

• Processor specs: 200 ps clock, MP of 50
clock cycles, MR of 0.02 misses/instruction,
and HT of 1 clock cycle

AMAT = ???
• Which improvement would be best?

– 190 ps clock
– MP of 40 clock cycles
– MR of 0.015 misses/instruction

7/10/2014 Summer 2014 -- Lecture #11 37

380 ps

360 ps

350 ps

1 + 0.02 × 50 = 2 clock cycles = 400 ps

Cache Parameter Effects

• What is the potential impact of much
larger cache on AMAT? (same block size)

– Increase HR
– Longer HT: smaller is faster
– At some point, increase in hit time for a

larger cache may overcome the
improvement in hit rate, yielding a
decrease in performance

● Effect on TIO? Bits in cache? Cost?

7/10/2014 Summer 2014 -- Lecture #11 38

Effect of Cache Performance on CPI

• Recall: CPU Performance
CPU Time = Instructions × CPI × Clock Cycle Time

• Include memory accesses in CPI:
CPIstall = CPIbase + Average Memory-stall Cycles

CPU Time = IC × CPIstall × CC

• Simplified model for memory-stall cycles:

Memory-stall cycles

7/10/2014 Summer 2014 -- Lecture #11 39

(CC)(IC)

CPI Example

• Processor specs: CPIbase of 2, a 100
cycle MP, 36% load/store instructions, and
2% I$ and 4% D$ MRs

– How many times per instruction do we
access the I$? The D$?

– MP is assumed the same for both I$ and
D$

– Memory-stall cycles will be sum of stall
cycles for both I$ and D$

7/10/2014 Summer 2014 -- Lecture #11 40

CPI Example

• Processor specs: CPIbase of 2, a 100 cycle MP, 36%
load/store instructions, and 2% I$ and 4% D$ MRs

– Memory-stall cycles
= (100% × 2% + 36% × 4%) × 100 = 3.44

– CPIstall = 2 + 3.44 = 5.44 (more than 2 x CPIbase!)
What if the CPIbase is reduced to 1?

• What if the D$ miss rate went up by 1%?

7/10/2014 Summer 2014 -- Lecture #11 41

I$ D$

Impacts of Cache
Performance

CPIstall = CPIbase + Memory-stall Cycles

• Relative penalty of cache performance
increases as processor performance improves
(faster clock rate and/or lower CPIbase)

– Relative contribution of CPIbase and memory-stall
cycles to CPIstall

– Memory speed unlikely to improve as fast as
processor cycle time

• What can we do to improve cache
performance?

7/10/2014 Summer 2014 -- Lecture #11 42

Sources of Cache Misses: The 3Cs

• Compulsory: (cold start or process
migration, 1st reference)

– First access to block impossible to avoid;
Effect is small for long running programs

• Capacity:
– Cache cannot contain all blocks accessed by

the program

• Conflict: (collision)
– Multiple memory locations mapped to the

same cache location

7/10/2014 Summer 2014 -- Lecture #11 43

The 3Cs: Design Solutions

• Compulsory:
– Increase block size (increases MP; too

large blocks could increase MR)

• Capacity:
– Increase cache size (may increase HT)

• Conflict:
– Increase cache size
– Increase associativity (may increase HT)

7/10/2014 Summer 2014 -- Lecture #11 44

Summary

• Set associativity determines flexibility of block
placement

– Fully associative: blocks can go anywhere
– Direct-mapped: blocks go in one specific location
– N-way: cache split into sets, each of which have n slots

to place memory blocks

• Cache Performance
– AMAT = HT + MR × MP
– CPU time = IC × CPIstall × CC

 = IC × (CPIbase + Memory-stall cycles) × CC

7/10/2014 Summer 2014 -- Lecture #11 45

	Slide 1
	Great Idea #3: Principle of Locality/ Memory Hierarchy
	Extended Review of Last Lecture
	Extended Review of Last Lecture
	Extended Review of Last Lecture
	Extended Review of Last Lecture
	Agenda
	Direct-Mapped Caches (1/3)
	Direct-Mapped Caches (2/3)
	TIO Address Breakdown
	Direct-Mapped Caches (3/3)
	DM Cache Example (1/5)
	DM Cache Example (2/5)
	DM Cache Example (3/5)
	DM Cache Example (4/5)
	DM Cache Example (5/5)
	Worst-Case for Direct-Mapped
	Comparison So Far
	Agenda
	Administrivia
	Agenda
	Set Associative Caches
	Effect of Associativity on TIO (1/2)
	Effect of Associativity on TIO (2/2)
	Example: Eight-Block Cache Configs
	Block Placement Schemes
	SA Cache Example (1/5)
	SA Cache Example (2/5)
	SA Cache Example (3/5)
	SA Cache Example (4/5)
	SA Cache Example (5/5)
	Worst Case for Set Associative
	Slide 33
	Get To Know Your Instructor
	Agenda
	Cache Performance
	AMAT Example
	Cache Parameter Example
	Effect of Cache Performance on CPI
	CPI Example
	CPI Example
	Impacts of Cache Performance
	Sources of Cache Misses: The 3Cs
	The 3Cs: Design Solutions
	Summary

