CS 61C: Great Ideas In
Computer Architecture

Performance Programming,
Technology Trends

Instructor: Alan Christopher
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Review of Last Lecture

e Multilevel caches reduce miss
penalty

- Standard to have 2-3 cache levels (and
split 1$/D$)
- Makes CPI/AMAT calculations more
complicated
 Cache design choices change
performance parameters and cost
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Question: (based on previous
midterm question)

Which of the following cache changes
will definitely increase L1 Hit Time?

(B)Adding unified L2$%$, which is larger
than L1 but smaller than memory

(G)Increasing block size while keeping
cache size constant

(P)Increasing associativity while
keeping cache size constant

(Y)



Agenda

* Performance Programming
 Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism
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Performance Programming

* Adjust memory accesses in code
(software) to improve miss rate

 With understanding of how caches
work, can revise programs to
improve cache utilization
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Performance of Loops and
Arrays

* Array performance often limited by memory
speed

 Goal: Increase performance by minimizing traffic
from cache to memory

- Reduce your miss rate by getting better reuse of data
already in the cache

- It is okay to access memory in different orderings as
long as you still end up with the correct result

 Cache Blocking: “shrink” the problem by
performing multiple iterations on smaller chunks
that “fit well” in your cache

- Use Matrix Multiply as an example (Lab 6 and Project 2)
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Ex: Looping Performance (1/5)

 We have an array int A[1024] that
we want to increment (i.e. A[1]++)

 What does the increment operation
look like In assembly?

7/15/2014

# A --> $s0
1w $t0,0($s0)
addiu $t0, $t06,1

SwW $tO,0($s0)< Guaranteed hit!
addiu $s0,$s0,4
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Ex: Looping Performance (2/5)

 We have an array int A[1024] that
we want to increment (i.e. A[1]++)

 What will our miss rate be for a D$
with 1-word blocks? (array not in $ at
start)

- 50% MR because each array element
(word) accessed just once

 Can code choices change this?
- No



Ex: Looping Performance (3/5)

* We have an array int A[1024] that we
want to increment (i.e. A[1]++)

* Now for a D$ with 2-word blocks, what are
the best and worst miss rates we can
achieve?

- Best: 75% MR via standard
Incrementation

(each block will miss then hit, hit, hit)
- Code:
for(int 1=0; 1<1024, 1i++) A[1l]++;
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Ex: Looping Performance (4/5)

« We have an array int A[1024] that we want
to increment (i.e. A[1]++)

* Now for a D$ with 2-word blocks, what are the
best and worst miss rates we can achieve?

- Worst: 50% MR by skipping elements
(assuming D$ smaller than half of array size)

- Code:
for(int 1i=0; i<1024; i+=2) A[i]++;
for(int i=1; i<1024; i+=2) A[i]++;
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Ex: Looping Performance (5/5)

* We have an array int A[1024] that we
want to increment (i.e. A[i]++)

* For an I$ with 1-word blocks, what
happens if we don’t use labels/loops?

- 100% MR, as all instructions are explicitly
written out sequentially

 What if we loop by incrementing i by 17

- Will miss on first pass over code, but should
be found in I$ for all subsequent passes



Agenda

 Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism
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Administrivia

My OH this week moved to tomorrow
from 11lam-1pm in 411 Soda

e Midterm: 7/21 @ 5pm in 2050 VLSB

- Take old exams for practice
- Double-sided sheet of handwritten notes
- MIPS Green Sheet provided; no calculators

- Covers all knowledge, ever
* Focus on the material up through this
Friday's lecture



Agenda

* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism
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Matrix Multiplication
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Nailve Matrix Multiply

for (1=0; i<N; 1i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
c[1][3] += a[1][k] * b[k][]1];

Advantage: Code simplicity

Disadvantage: Blindly marches
through memory and caches
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Matrices in Memory (1/2)

* Matrices stored as 1-D arrays in memory
- Column major: A(i,j) at A+i+j*n
- Row major: A(i,j) at A+i*n+j
* C default is row major

Column major: Row major:

Jo 5 [10]15 0|l1]2]3
1|6 (11|16 4 ({5167
2| 7 (12|17 819 (10|11
3|8 (13|18 121314 |15
41 9 14|19 1617|1819
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Matrices in Memory (2/2)

e How do cache blocks fit into this scheme?

- Column major matrix in memory:
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Cache
blocks
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Nalve Matrix Multiply (cache view)

# move along rows of A
for 1 =1 ton
# move along columns of B
for j =1 ton
# EACH k loop reads row of A, col of B
# Also read & write c(1,J) n times
for k =1 to n
c(1,]J) = c(1,3) + a(1,k) * b(k,J)

C(i,j) C(i,j) A(i,:)
[ — O + [ K B(:.,j)
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Linear Algebra to the
Rescue (1/2)

 Can get the same result of a matrix
multiplication by splitting the matrices into
smaller submatrices (matrix “blocks”)

* For example, multiply two 4x4 matrices:

LB

A = %21
Q34

_a41
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Q12 Q13 Qg7
Ay Q3 Qoa| _ |Ag A1z] : : .y
U3y Q33 Qas| = |Ay, Ay, with B defined similarly.
Qgz Qg3  Ayql
AB = [(A11B11 +A1,B51) (A11B12 + A138;;)
(A21B11 +A32B1)  (Az1Bip + A3B;;)
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Linear Algebra to the Rescue (2/2)

Cu|Ci | Ci | Cu
G Cys | Ca
c.lc,lc.lc,
c.lc,lc.lc,

Matrices of size NxN, split into 4 blocks of size r (N=4r).

Co, = AyBiy + ApByy + AsBs, + AyByy, = Zk A, *By,

e Multiplication operates on small “block” matrices
* Choose size so that they fit in the cache!

7/15/2014
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Blocked Matrix Multiply

* Blocked version of the naive algorithm:

for(i = 0; 1 < N/r; i++)
for(j = 0; j < N/r; j++)
for(k = 0; k < N/r; k++)
C[1][]] += \A[i][k]*B[k][:i]I

/

r X r matrix addition r X r matrix multiplication

- r = matrix block size (assume r divides N)

- X[1][]j] = submatrix of X, defined by block
row i and block column j

7/15/2014 Summer 2014 -- Lecture #13 22



Blocked Matrix Multiply (cache view)

for 1 = 1 to N

for j =1 to N

Matrix

for Kk =1 to N ///////1hmﬂpw

C(i,j) = C(i,j) + A(i, k) *"B(k,j) blocks

(i) C(ij) Ali k)

[] + et I Bk
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Matrix Multiply Comparison

* Nalve Matrix Multiply
- N =100, 1000 cache blocks, 1 word/block
- Youtube: Slow/Fast-forward
- = 1,020,0000 cache misses

* Blocked Matrix Multiply

- N =100, 1000 cache blocks, 1
word/block, r = 30

- Youtube: Slow/Fast-forward
- = 90,000 cache misses
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http://www.youtube.com/watch?v=yl0LTcDIhxc
http://www.youtube.com/watch?v=f3-z6t_xIyw
http://www.youtube.com/watch?v=IFWgwGMMrh0
http://www.youtube.com/watch?v=tgpmXX3xOrk

Maximum Block Size

. Blockinig optimization only works if the
blocks fit in cache
- Must flt 3 blocks of size r x r in memory

(for A, B, and C)
 For cache of size M (in elements/words),
we must have 3rz=M, orr =+v(M/3)

 Ratio of cache misses unblocked vs.
blocked up to = VM (play with sizes to
optimize)
- From comparison: ratio was = 11, vM = 31.6
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Technology Break

Summer 2014 -- Lecture #13

26



Agenda

* Performance Programming
e Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13

27



Six Great Ideas In
Computer Architecture

1. Layers of Representation/Interpretation

2. Moore’'s Law

3. Principle of Locality/Memory Hierarchy
4. Parallelism

5. Performance Measurement & Improvement

6. Dependability via Redundancy
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Technology Cost over Time

What does improving technology look like?

Cost
$

7/17/2013

A
D

>Time
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Tech Cost: Successive Generations

Cost

Genl

Gen 2

Gen 3

>Time
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Tech Performance over Time

A Gen 3

Gen 2

Genl

Performance

>Time
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Log? of tha Humber of Comporants

Moore’s Law

“The complexity for minimum Gordon Moore, “Cramming more
component costs has increased components onto integrated circuits,

”n

at a rate of roughly a factor of Electronics, Volume 38, Number 8,

two per year. ...That means by ~ April 19, 1965
1975, the number of components

per integrated circuit for

“Integrated circuits will lead to such

minimum cost will be 65,000.” wonders as home computers--or at

(from 50 in 1965)

G

Per Integrated Function

= k3 L M Ch 0 = 000 D = bkl 3 M O
5
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least terminals connected to a central
computer--automatic controls for
automobiles, and personal portable
communications equipment. The
electronic wristwatch needs only a
display to be feasible today.”
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c Great Idea #2: Moore’s Law
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End of Moore’s Law?

 Exponential growth cannot last forever
* More transistors/chip will end during your
careers
- 20207 20257
- (When) will something replace it?

* It's also a law of investment in equipment
as well as increasing volume of integrated
circuits that need more transistors per chip
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Computer Technology:
Growing, But More Slowly

Processor
- Speed 2x / 1.5 years (since '85-'05) [slowing!]
- Now +2 cores / 2 years
-  When you graduate: 3-4 GHz, 6-8 Cores in client, 10-16 in server

Memory (DRAM)
- Capacity: 2x / 2 years (since '96) [slowing!]
- Now 2X/3-4 years
-  When you graduate: 8-16 GigaBytes
Disk
- Capacity: 2x / 1 year (since '97)
- 250X size last decade
-  When you graduate: 6-12 TeraBytes
Network

- Core: 2x every 2 years
- Access: 100-1000 mbps from home, 1-10 mbps cellular
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Kbit capacity

Memory Chip Size
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Uniprocessor Performance

10,000

Improvements in processor
performance have slowed.
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Limits to Performance
Faster Means More Power
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Dynamic Power

e Power=C x V2xf

- Proportional to capacitance, voltagez, and
frequency of switching

 What is the effect on power consumption
of:

- “Simpler” implementation (fewer L
transistors)?
I

- Reduced voltage?
- Increased clock frequency? T
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Multicore Helps Energy Efficiency

e Power=C x V2 X f

In the same process technology...

Frplp:
Vﬂltage = 1 Vﬂltage = _-15% William Holt,

HOT Chips 2005

Freq =1 Freq -15%
Area = 1 Area p
Power =1 Power 1

Perf =1 Perf ~1.8
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Transition to Multicore

AMD Phenom (4 cores)
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Parallelism - The Challenge

* Only path to performance is parallelism
- Clock rates flat or declining
* Key challenge is to craft parallel programs that have

high performance on multiprocessors as the number of
processors increase - i.e. that scale

- Scheduling, load balancing, time for synchronization,
overhead for communication

* Project #2: fastest power iteration (related to matmul)
code on 8 processor (cores) computers
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Summary

 Performance programming

- With understanding of your computer’s
architecture, can optimize code to take
advantage of your system’s cache

- Especially useful for loops and arrays

- “Cache blocking” will improve speed of

Matrix Multiply with appropriately-sized
blocks

* Processors have hit the power wall,
the only option is to go parallel
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