CS 61C: Great Ideas In
Computer Architecture

Performance Programming,
Technology Trends

Instructor: Alan Christopher

7/15/2014 Summer 2014 -- Lecture #13

Review of Last Lecture

e Multilevel caches reduce miss
penalty

- Standard to have 2-3 cache levels (and
split 1$/D$)
- Makes CPI/AMAT calculations more
complicated
 Cache design choices change
performance parameters and cost

7/15/2014 Summer 2014 -- Lecture #13

Question: (based on previous
midterm question)

Which of the following cache changes
will definitely increase L1 Hit Time?

(B)Adding unified L2$%$, which is larger
than L1 but smaller than memory

(G)Increasing block size while keeping
cache size constant

(P)Increasing associativity while
keeping cache size constant

(Y)

Agenda

* Performance Programming
 Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13

Performance Programming

* Adjust memory accesses in code
(software) to improve miss rate

 With understanding of how caches
work, can revise programs to
improve cache utilization

7/15/2014 Summer 2014 -- Lecture #13

Performance of Loops and
Arrays

* Array performance often limited by memory
speed

 Goal: Increase performance by minimizing traffic
from cache to memory

- Reduce your miss rate by getting better reuse of data
already in the cache

- It is okay to access memory in different orderings as
long as you still end up with the correct result

 Cache Blocking: “shrink” the problem by
performing multiple iterations on smaller chunks
that “fit well” in your cache

- Use Matrix Multiply as an example (Lab 6 and Project 2)

7/15/2014 Summer 2014 -- Lecture #13 6

Ex: Looping Performance (1/5)

 We have an array int A[1024] that
we want to increment (i.e. A[1]++)

 What does the increment operation
look like In assembly?

7/15/2014

A --> $s0
1w $t0,0($s0)
addiu $t0, $t06,1

SwW $tO,0($s0)< Guaranteed hit!
addiu $s0,$s0,4

Summer 2014 -- Lecture #13 7

Ex: Looping Performance (2/5)

 We have an array int A[1024] that
we want to increment (i.e. A[1]++)

 What will our miss rate be for a D$
with 1-word blocks? (array not in $ at
start)

- 50% MR because each array element
(word) accessed just once

 Can code choices change this?
- No

Ex: Looping Performance (3/5)

* We have an array int A[1024] that we
want to increment (i.e. A[1]++)

* Now for a D$ with 2-word blocks, what are
the best and worst miss rates we can
achieve?

- Best: 75% MR via standard
Incrementation

(each block will miss then hit, hit, hit)
- Code:
for(int 1=0; 1<1024, 1i++) A[1l]++;

7/15/2014 Summer 2014 -- Lecture #13

Ex: Looping Performance (4/5)

« We have an array int A[1024] that we want
to increment (i.e. A[1]++)

* Now for a D$ with 2-word blocks, what are the
best and worst miss rates we can achieve?

- Worst: 50% MR by skipping elements
(assuming D$ smaller than half of array size)

- Code:
for(int 1i=0; i<1024; i+=2) A[i]++;
for(int i=1; i<1024; i+=2) A[i]++;

7/15/2014 Summer 2014 -- Lecture #13 10

Ex: Looping Performance (5/5)

* We have an array int A[1024] that we
want to increment (i.e. A[i]++)

* For an I$ with 1-word blocks, what
happens if we don’t use labels/loops?

- 100% MR, as all instructions are explicitly
written out sequentially

 What if we loop by incrementing i by 17

- Will miss on first pass over code, but should
be found in I$ for all subsequent passes

Agenda

 Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 12

Administrivia

My OH this week moved to tomorrow
from 11lam-1pm in 411 Soda

e Midterm: 7/21 @ 5pm in 2050 VLSB

- Take old exams for practice
- Double-sided sheet of handwritten notes
- MIPS Green Sheet provided; no calculators

- Covers all knowledge, ever
* Focus on the material up through this
Friday's lecture

Agenda

* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 14

Matrix Multiplication

Lﬁﬁ
|
Q
=
¥
o~
x>
S
Q)
%
O
%

7/15/2014 Summer 2014 -- Lecture #13 15

Nailve Matrix Multiply

for (1=0; i<N; 1i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
c[1][3] += a[1][k] * b[k][]1];

Advantage: Code simplicity

Disadvantage: Blindly marches
through memory and caches

7/15/2014 Summer 2014 -- Lecture #13 16

Matrices in Memory (1/2)

* Matrices stored as 1-D arrays in memory
- Column major: A(i,j) at A+i+j*n
- Row major: A(i,j) at A+i*n+j
* C default is row major

Column major: Row major:

Jo 5 [10]15 0|l1]2]3
1|6 (11|16 4 ({5167
2| 7 (12|17 819 (10|11
3|8 (13|18 121314 |15
41 9 14|19 1617|1819

7/15/2014 Summer 2014 -- Lecture #13

Matrices in Memory (2/2)

e How do cache blocks fit into this scheme?

- Column major matrix in memory:

7/15/2014

Cache
blocks

Summer 2014 -- Lecture #13

<

ROW of matrix
(blue) is
spread among
cache blocks
shown in red

18

Nalve Matrix Multiply (cache view)

move along rows of A
for 1 =1 ton
move along columns of B
for j =1 ton
EACH k loop reads row of A, col of B
Also read & write c(1,J) n times
for k =1 to n
c(1,]J) = c(1,3) + a(1,k) * b(k,J)

C(i,j) C(i,j) A(i,:)
[— O + [K B(:.,j)

7/15/2014 Summer 2014 -- Lecture #13 19

Linear Algebra to the
Rescue (1/2)

 Can get the same result of a matrix
multiplication by splitting the matrices into
smaller submatrices (matrix “blocks”)

* For example, multiply two 4x4 matrices:

LB

A = %21
Q34

_a41

7/15/2014

Q12 Q13 Qg7
Ay Q3 Qoa| _ |Ag A1z] : : .y
U3y Q33 Qas| = |Ay, Ay, with B defined similarly.
Qgz Qg3 Ayql
AB = [(A11B11 +A1,B51) (A11B12 + A138;;)
(A21B11 +A32B1) (Az1Bip + A3B;;)

Summer 2014 -- Lecture #13 20

Linear Algebra to the Rescue (2/2)

Cu|Ci | Ci | Cu
G Cys | Ca
c.lc,lc.lc,
c.lc,lc.lc,

Matrices of size NxN, split into 4 blocks of size r (N=4r).

Co, = AyBiy + ApByy + AsBs, + AyByy, = Zk A, *By,

e Multiplication operates on small “block” matrices
* Choose size so that they fit in the cache!

7/15/2014

Summer 2014 -- Lecture #13

13

14

23

24

33

34

o W W W

43

o W W W

44

21

Blocked Matrix Multiply

* Blocked version of the naive algorithm:

for(i = 0; 1 < N/r; i++)
for(j = 0; j < N/r; j++)
for(k = 0; k < N/r; k++)
C[1][]] += \A[i][k]*B[k][:i]I

/

r X r matrix addition r X r matrix multiplication

- r = matrix block size (assume r divides N)

- X[1][]j] = submatrix of X, defined by block
row i and block column j

7/15/2014 Summer 2014 -- Lecture #13 22

Blocked Matrix Multiply (cache view)

for 1 = 1 to N

for j =1 to N

Matrix

for Kk =1 to N ///////1hmﬂpw

C(i,j) = C(i,j) + A(i, k) *"B(k,j) blocks

(i) C(ij) Ali k)

[] + et I Bk

7/15/2014 Summer 2014 -- Lecture #13 23

Matrix Multiply Comparison

* Nalve Matrix Multiply
- N =100, 1000 cache blocks, 1 word/block
- Youtube: Slow/Fast-forward
- = 1,020,0000 cache misses

* Blocked Matrix Multiply

- N =100, 1000 cache blocks, 1
word/block, r = 30

- Youtube: Slow/Fast-forward
- = 90,000 cache misses

7/15/2014 Summer 2014 -- Lecture #13 24

http://www.youtube.com/watch?v=yl0LTcDIhxc
http://www.youtube.com/watch?v=f3-z6t_xIyw
http://www.youtube.com/watch?v=IFWgwGMMrh0
http://www.youtube.com/watch?v=tgpmXX3xOrk

Maximum Block Size

. Blockinig optimization only works if the
blocks fit in cache
- Must flt 3 blocks of size r x r in memory

(for A, B, and C)
 For cache of size M (in elements/words),
we must have 3rz=M, orr =+v(M/3)

 Ratio of cache misses unblocked vs.
blocked up to = VM (play with sizes to
optimize)
- From comparison: ratio was = 11, vM = 31.6

7/15/2014 Summer 2014 -- Lecture #13

25

7/15/2014

Technology Break

Summer 2014 -- Lecture #13

26

Agenda

* Performance Programming
e Administrivia
* Perf Prog: Matrix Multiply

* Technology Trends
- The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13

27

Six Great Ideas In
Computer Architecture

1. Layers of Representation/Interpretation

2. Moore’'s Law

3. Principle of Locality/Memory Hierarchy
4. Parallelism

5. Performance Measurement & Improvement

6. Dependability via Redundancy

7/15/2014 Summer 2014 -- Lecture #13 28

Technology Cost over Time

What does improving technology look like?

Cost
$

7/17/2013

A
D

>Time

mmmmm

2013 -- Lecture #14

29

Tech Cost: Successive Generations

Cost

Genl

Gen 2

Gen 3

>Time

7/17/2013 Summer 2013 -- Lecture #14 30

Tech Performance over Time

A Gen 3

Gen 2

Genl

Performance

>Time

7/17/2013 Summer 2013 -- Lecture #14 31

Log? of tha Humber of Comporants

Moore’s Law

“The complexity for minimum Gordon Moore, “Cramming more
component costs has increased components onto integrated circuits,

”n

at a rate of roughly a factor of Electronics, Volume 38, Number 8,

two per year. ...That means by ~ April 19, 1965
1975, the number of components

per integrated circuit for

“Integrated circuits will lead to such

minimum cost will be 65,000.” wonders as home computers--or at

(from 50 in 1965)

G

Per Integrated Function

= k3 L M Ch 0 = 000 D = bkl 3 M O
5

7/15/2014

least terminals connected to a central
computer--automatic controls for
automobiles, and personal portable
communications equipment. The
electronic wristwatch needs only a
display to be feasible today.”

Summer 2014 -- Lecture #13 32

c Great Idea #2: Moore’s Law

2,000,000,000 —
'5 1,000,000,000 —
@)
=
O
T 100,000,000 —
|
©
| -
o)
O 10,000,000 —
-
<
C
© 1,000,000 —
(-
o
d
S 100,000 —
4
A
(Vp]
C
© 10,000 —
| -
)
S 2,300 —
H#
Year:

7/15/2014

Doisd-Ciovrg Manum

20 i Ousd-Core Ranium Tukeia

Pﬂlﬂiﬂu‘ :m
Itanium 2 with W8 cacha @ ..
jhun
Cure?ﬂund 23 Buo
Ranm 2 @ ,* 155
doxs
H‘. ® [Rarton & At
Predicts: Transistor count ol
per chip doubles gt oP
: il
every 2 years -
'J-Pcfdum
qunl'u'
e
woe -
. Gordon Moore
) Intel Cofounder
o0 B.S. Cal 1950
m-.‘jm
1971 1980 1990 2000 2008
Summer 2014 -- Lecture #13 33

End of Moore’s Law?

 Exponential growth cannot last forever
* More transistors/chip will end during your
careers
- 20207 20257
- (When) will something replace it?

* It's also a law of investment in equipment
as well as increasing volume of integrated
circuits that need more transistors per chip

7/15/2014 Summer 2014 -- Lecture #13 34

Computer Technology:
Growing, But More Slowly

Processor
- Speed 2x / 1.5 years (since '85-'05) [slowing!]
- Now +2 cores / 2 years
- When you graduate: 3-4 GHz, 6-8 Cores in client, 10-16 in server

Memory (DRAM)
- Capacity: 2x / 2 years (since '96) [slowing!]
- Now 2X/3-4 years
- When you graduate: 8-16 GigaBytes
Disk
- Capacity: 2x / 1 year (since '97)
- 250X size last decade
- When you graduate: 6-12 TeraBytes
Network

- Core: 2x every 2 years
- Access: 100-1000 mbps from home, 1-10 mbps cellular

7/15/2014 Summer 2014 -- Lecture #13 35

Kbit capacity

Memory Chip Size

1,000,000 -

100,000 -

10,000 -

1000 -

100 -

1G

.t
s
.t
.®
.®
.®

s
.®
.®
.®
.
.t
s

512M

4x in 3 years 2X in 3 years

10

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Year of introduction

Growth in memory capacity slowing

7/15/2014

Summer 2014 -- Lecture #13 36

Uniprocessor Performance

10,000

Improvements in processor
performance have slowed.

1000

100

52%iyear

Performance (vs.VAX-11/780)

10

1.5, VAX-11/785

i i i i i i i i

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Limits to Performance
Faster Means More Power

(snep) Jemod

o O

o

T 120

3600

2667

2000

o
o
-
|
T

o0 (o)
l
1

T}
(@)

103

75.3

]

Clock Rate o

66
O

4
|
I

Power

29.1

1 20

@
™

(£002)
ploysiuey
2 8100
(+002)
Noosalid

 wnpuad
(Lo0Z)

oaWel|IA\
b wnpuad

(2661) 01d
wnnuad

(c661)
wnnuad

(6861)
98108

(Gg861)
98£08

(2861)
98208

10000

1000 +
100 +

(ZHN) 818y %2010

38

Lecture #13

Summer 2014 --

7/15/2014

Dynamic Power

e Power=C x V2xf

- Proportional to capacitance, voltagez, and
frequency of switching

 What is the effect on power consumption
of:

- “Simpler” implementation (fewer L
transistors)?
I

- Reduced voltage?
- Increased clock frequency? T

7/15/2014 Summer 2014 -- Lecture #13 39

Multicore Helps Energy Efficiency

e Power=C x V2 X f

In the same process technology...

Frplp:
Vﬂltage = 1 Vﬂltage = _-15% William Holt,

HOT Chips 2005

Freq =1 Freq -15%
Area = 1 Area p
Power =1 Power 1

Perf =1 Perf ~1.8

7/15/2014 Summer 2014 -- Lecture #13 40

Transition to Multicore

AMD Phenom (4 cores)

Intel i -s.‘__ d Trafnsistors;
Pentlum4 it /" (Thousands)

Parallel App
Performance

SequenUaIApp
Per*forma nce

...

...........................

j Ty;?aical Power
T N el . T (Watts)
1] i T 4, a A « , Number

10 E_ b SRR 4a ju " o) fCDrE!S

1975 1980 1985 1990 1995 2000 2005 2010 2015
Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
7/15/2014 Summer 2014 -- Lecture #13 41

Parallelism - The Challenge

* Only path to performance is parallelism
- Clock rates flat or declining
* Key challenge is to craft parallel programs that have

high performance on multiprocessors as the number of
processors increase - i.e. that scale

- Scheduling, load balancing, time for synchronization,
overhead for communication

* Project #2: fastest power iteration (related to matmul)
code on 8 processor (cores) computers

7/15/2014 Summer 2014 -- Lecture #13 42

Summary

 Performance programming

- With understanding of your computer’s
architecture, can optimize code to take
advantage of your system’s cache

- Especially useful for loops and arrays

- “Cache blocking” will improve speed of

Matrix Multiply with appropriately-sized
blocks

* Processors have hit the power wall,
the only option is to go parallel

	Slide 1
	Review of Last Lecture
	Slide 3
	Agenda
	Performance Programming
	Performance of Loops and Arrays
	Ex: Looping Performance (1/5)
	Ex: Looping Performance (2/5)
	Ex: Looping Performance (3/5)
	Ex: Looping Performance (4/5)
	Ex: Looping Performance (5/5)
	Agenda
	Administrivia
	Agenda
	Matrix Multiplication
	Naïve Matrix Multiply
	Matrices in Memory (1/2)
	Matrices in Memory (2/2)
	Naïve Matrix Multiply (cache view)
	Linear Algebra to the Rescue (1/2)
	Linear Algebra to the Rescue (2/2)
	Blocked Matrix Multiply
	Blocked Matrix Multiply (cache view)
	Matrix Multiply Comparison
	Maximum Block Size
	Get To Know Your Staff
	Agenda
	Six Great Ideas in Computer Architecture
	Technology Cost over Time
	Tech Cost: Successive Generations
	Tech Performance over Time
	Moore’s Law
	Great Idea #2: Moore’s Law
	End of Moore’s Law?
	Computer Technology: Growing, But More Slowly
	Memory Chip Size
	Uniprocessor Performance
	Limits to Performance: Faster Means More Power
	Dynamic Power
	Multicore Helps Energy Efficiency
	Transition to Multicore
	Parallelism - The Challenge
	Summary

