
Instructor:  Alan Christopher

7/15/2014 Summer 2014 -- Lecture #13 1

CS 61C: Great Ideas in 
Computer Architecture

Performance Programming,
Technology Trends



Review of Last Lecture

• Multilevel caches reduce miss 
penalty

– Standard to have 2-3 cache levels (and 
split I$/D$)

– Makes CPI/AMAT calculations more 
complicated

• Cache design choices change 
performance parameters and cost

7/15/2014 Summer 2014 -- Lecture #13 2



Adding unified L2$, which is larger 
than L1 but smaller than memory

(B)

Increasing block size while keeping 
cache size constant

(G)

Increasing associativity while 
keeping cache size constant

(P)

3

Question:  (based on previous 
midterm question)

Which of the following cache changes 
will definitely increase L1 Hit Time?  

Switching our replacement 
policy from LRU to Random

(Y)



Agenda

• Performance Programming
• Administrivia
• Perf Prog:  Matrix Multiply
• Technology Trends

– The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 4



Performance Programming

• Adjust memory accesses in code 
(software) to improve miss rate

• With understanding of how caches 
work, can revise programs to 
improve cache utilization

7/15/2014 Summer 2014 -- Lecture #13 5



Performance of Loops and 
Arrays

• Array performance often limited by memory 
speed

• Goal:  Increase performance by minimizing traffic 
from cache to memory

– Reduce your miss rate by getting better reuse of data 
already in the cache

– It is okay to access memory in different orderings as 
long as you still end up with the correct result

• Cache Blocking:  “shrink” the problem by 
performing multiple iterations on smaller chunks 
that “fit well” in your cache

– Use Matrix Multiply as an example (Lab 6 and Project 2)

7/15/2014 Summer 2014 -- Lecture #13 6



Ex: Looping Performance (1/5)

• We have an array int A[1024] that 
we want to increment (i.e. A[i]++)

• What does the increment operation 
look like in assembly?

# A --> $s0
lw    $t0,0($s0)
addiu $t0,$t0,1
sw    $t0,0($s0)
addiu $s0,$s0,4

7/15/2014 Summer 2014 -- Lecture #13 7

Guaranteed hit!



Ex: Looping Performance (2/5)

• We have an array int A[1024] that 
we want to increment (i.e. A[i]++)

• What will our miss rate be for a D$ 
with 1-word blocks? (array not in $ at 
start)

– 50% MR because each array element 
(word) accessed just once

• Can code choices change this?
– No

7/15/2014 Summer 2014 -- Lecture #13 8



Ex: Looping Performance (3/5)

• We have an array int A[1024] that we 
want to increment (i.e. A[i]++)

• Now for a D$ with 2-word blocks, what are 
the best and worst miss rates we can 
achieve?

– Best:  75% MR via standard 
incrementation 
(each block will miss then hit, hit, hit)

– Code:
for(int i=0; i<1024; i++) A[i]++;

7/15/2014 Summer 2014 -- Lecture #13 9



Ex: Looping Performance (4/5)

• We have an array int A[1024] that we want 
to increment (i.e. A[i]++)

• Now for a D$ with 2-word blocks, what are the 
best and worst miss rates we can achieve?

– Worst:  50% MR by skipping elements 
(assuming D$ smaller than half of array size)

– Code:
for(int i=0; i<1024; i+=2) A[i]++;

for(int i=1; i<1024; i+=2) A[i]++;

7/15/2014 Summer 2014 -- Lecture #13 10



Ex: Looping Performance (5/5)

• We have an array int A[1024] that we 
want to increment (i.e. A[i]++)

• For an I$ with 1-word blocks, what 
happens if we don’t use labels/loops?

– 100% MR, as all instructions are explicitly 
written out sequentially

• What if we loop by incrementing i by 1?
– Will miss on first pass over code, but should 

be found in I$ for all subsequent passes

7/15/2014 Summer 2014 -- Lecture #13 11



Agenda

• Performance Programming
• Administrivia
• Perf Prog:  Matrix Multiply
• Technology Trends

– The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 12



Administrivia

• My OH this week moved to tomorrow 
from 11am-1pm in 411 Soda

• Midterm:  7/21 @ 5pm in 2050 VLSB
– Take old exams for practice 
– Double-sided sheet of handwritten notes
– MIPS Green Sheet provided; no calculators
– Covers all knowledge, ever

● Focus on the material up through this 
Friday's lecture

7/15/2014 Summer 2014 -- Lecture #13 13



Agenda

• Performance Programming
• Administrivia
• Perf Prog:  Matrix Multiply
• Technology Trends

– The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 14



Matrix Multiplication

7/15/2014 Summer 2014 -- Lecture #13 15

C

= ×

A B

ai* b*j

cij



Advantage:  Code simplicity

Disadvantage:  Blindly marches 
through memory and caches

Naïve Matrix Multiply

for (i=0; i<N; i++)
  for (j=0; j<N; j++)

  for (k=0; k<N; k++)
   c[i][j] += a[i][k] * b[k][j];

7/15/2014 Summer 2014 -- Lecture #13 16



Matrices in Memory (1/2)

• Matrices stored as 1-D arrays in memory
– Column major: A(i,j) at A+i+j*n
– Row major: A(i,j) at A+i*n+j

● C default is row major

7/15/2014 Summer 2014 -- Lecture #13 17

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Column major:

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Row major:



Matrices in Memory (2/2)

• How do cache blocks fit into this scheme?
– Column major matrix in memory:

7/15/2014 Summer 2014 -- Lecture #13 18

Cache 
blocks

ROW of matrix 
(blue) is 
spread among 
cache blocks 
shown in red



Naïve Matrix Multiply (cache view)

7/15/2014 Summer 2014 -- Lecture #13 19

# move along rows of A
for i = 1 to n
  # move along columns of B
  for j = 1 to n
    # EACH k loop reads row of A, col of B
    # Also read & write c(i,j) n times
    for k = 1 to n
      c(i,j) = c(i,j) + a(i,k) * b(k,j)

= + *
C(i,j) A(i,:)

B(:,j)

C(i,j)



Linear Algebra to the 
Rescue (1/2)

• Can get the same result of a matrix 
multiplication by splitting the matrices into 
smaller submatrices (matrix “blocks”)

• For example, multiply two 4×4 matrices:

7/15/2014 Summer 2014 -- Lecture #13 20



Linear Algebra to the Rescue (2/2)

7/15/2014 Summer 2014 -- Lecture #13 21

Matrices of size N×N, split into 4 blocks of size r (N=4r).

C22 = A21B12 + A22B22 + A23B32 + A24B42  =  ∑k A2k*Bk2

•  Multiplication operates on small “block” matrices
●  Choose size so that they fit in the cache!

C
11

C
12

C
13

C
14

C
21

C
22

C
23

C
24

C
31

C
32

C
33

C
34

C
41

C
42

C
43

C
44

A
11

A
12

A
13

A
14

A
21

A
22

A
23

A
24

A
31

A
32

A
33

A
34

A
41

A
42

A
43

A
44

B
11

B
12

B
13

B
14

B
21

B
22

B
23

B
24

B
32

B
32

B
33

B
34

B
41

B
42

B
43

B
44



Blocked Matrix Multiply

• Blocked version of the naïve algorithm:

– r = matrix block size (assume r divides N)
– X[i][j] =  submatrix of X, defined by block 

row i and block column j

7/15/2014 Summer 2014 -- Lecture #13 22

r × r matrix multiplicationr × r matrix addition

for(i = 0; i < N/r; i++)
  for(j = 0; j < N/r; j++)
    for(k = 0; k < N/r; k++)
      C[i][j] += A[i][k]*B[k][j]



Blocked Matrix Multiply (cache view)

# move along block row of A
for i = 1 to N
  # move along block col of B
  for j = 1 to N
    # each k loop reads block of A and B
    # Also read and write block of C
    for k = 1 to N
      C(i,j) = C(i,j) + A(i,k) * B(k,j)

7/15/2014 Summer 2014 -- Lecture #13 23

= + * B(k,j)
C(i,j)C(i,j) A(i,k)

Matrix 
multiply 

on 
blocks



Matrix Multiply Comparison

• Naïve Matrix Multiply
– N = 100, 1000 cache blocks, 1 word/block 
– Youtube:  Slow/Fast-forward
– ≈ 1,020,0000 cache misses

• Blocked Matrix Multiply
– N = 100, 1000 cache blocks, 1 

word/block, r = 30
– Youtube:  Slow/Fast-forward
– ≈ 90,000 cache misses

7/15/2014 Summer 2014 -- Lecture #13 24

http://www.youtube.com/watch?v=yl0LTcDIhxc
http://www.youtube.com/watch?v=f3-z6t_xIyw
http://www.youtube.com/watch?v=IFWgwGMMrh0
http://www.youtube.com/watch?v=tgpmXX3xOrk


Maximum Block Size

• Blocking optimization only works if the 
blocks fit in cache

– Must fit 3 blocks of size r × r in memory 
(for A, B, and C)

• For cache of size M (in elements/words), 
we must have  3r2 ≈ M, or r ≈ √(M/3)

• Ratio of cache misses unblocked vs. 
blocked up to ≈ √M (play with sizes to 
optimize)

– From comparison:  ratio was ≈ 11, √M = 31.6

7/15/2014 Summer 2014 -- Lecture #13 25



Technology Break

7/15/2014 Summer 2014 -- Lecture #13 26



Agenda

• Performance Programming
• Administrivia
• Perf Prog:  Matrix Multiply
• Technology Trends

– The Need for Parallelism

7/15/2014 Summer 2014 -- Lecture #13 27



Six Great Ideas in 
Computer Architecture

1. Layers of Representation/Interpretation

2. Moore’s Law

3. Principle of Locality/Memory Hierarchy

4. Parallelism

5. Performance Measurement & Improvement

6. Dependability via Redundancy

7/15/2014 Summer 2014 -- Lecture #13 28



Technology Cost over Time

7/17/2013 Summer 2013 -- Lecture #14 29

Cost
$

Time

A

B

C

D

What does improving technology look like?



Time

Tech Cost: Successive Generations

7/17/2013 Summer 2013 -- Lecture #14 30

Cost
$

Gen 1

Gen 3

Gen 2



Time

Tech Performance over Time

7/17/2013 Summer 2013 -- Lecture #14 31

Pe
rf

o
rm

a
n

ce

Gen 1

Gen 2

Gen 3



Moore’s Law
“The complexity for minimum 
component costs has increased 
at a rate of roughly a factor of 
two per year. …That means by 
1975, the number of components 
per integrated circuit for 
minimum cost will be 65,000.” 
(from 50 in 1965)

“Integrated circuits will lead to such 
wonders as home computers--or at 
least terminals connected to a central 
computer--automatic controls for 
automobiles, and personal portable 
communications equipment. The 
electronic wristwatch needs only a 
display to be feasible today.”

7/15/2014 Summer 2014 -- Lecture #13 32

Gordon Moore, “Cramming more 
components onto integrated circuits,” 
Electronics, Volume 38, Number 8, 
April 19, 1965



Great Idea #2: Moore’s Law

7/15/2014 Summer 2014 -- Lecture #13 33

Predicts: Transistor count 
per chip doubles 
every 2 years

Gordon Moore
Intel Cofounder
B.S. Cal 1950

#
 o

f 
tr

a
n

si
s t

o
rs

 o
n

 a
n

  
in

te
g

r a
te

d
 c

ir
cu

it
 (

IC
)

Year:



End of Moore’s Law?

• Exponential growth cannot last forever
• More transistors/chip will end during your 

careers
– 2020? 2025?
– (When) will something replace it?

• It’s also a law of investment in equipment 
as well as increasing volume of integrated 
circuits that need more transistors per chip

7/15/2014 Summer 2014 -- Lecture #13 34



Computer Technology: 
Growing, But More Slowly

• Processor
– Speed 2x / 1.5 years (since ’85-’05) [slowing!]
– Now +2 cores / 2 years
– When you graduate: 3-4 GHz, 6-8 Cores in client, 10-16 in server

• Memory (DRAM)
– Capacity: 2x / 2 years (since ’96) [slowing!]
– Now 2X/3-4 years
– When you graduate: 8-16 GigaBytes

• Disk
– Capacity: 2x / 1 year (since ’97)
– 250X size last decade
– When you graduate: 6-12 TeraBytes

• Network
– Core: 2x every 2 years
– Access: 100-1000 mbps from home, 1-10 mbps cellular

7/15/2014 35Summer 2014 -- Lecture #13



Memory Chip Size

7/15/2014 Summer 2014 -- Lecture #13 36

4x in 3 years 2x in 3 years

Growth in memory capacity slowing



Uniprocessor Performance

7/17/2013 Summer 2013 -- Lecture #14 37

Improvements in processor 
performance have slowed.



Limits to Performance:
Faster Means More Power

7/15/2014 Summer 2014 -- Lecture #13 38



Dynamic Power

• Power = C × V2 × f
– Proportional to capacitance, voltage2, and 

frequency of switching

• What is the effect on power consumption 
of:

– “Simpler” implementation (fewer 
transistors)?

– Reduced voltage?
– Increased clock frequency?

7/15/2014 Summer 2014 -- Lecture #13 39

↓ 
↓↓
↑



Multicore Helps Energy Efficiency

• Power = C × V2 × f

From:
William Holt, 
HOT Chips 2005

7/15/2014 40Summer 2014 -- Lecture #13



Transition to Multicore

7/15/2014 Summer 2014 -- Lecture #13 41

Sequential App 
Performance



Parallelism - The Challenge

• Only path to performance is parallelism
– Clock rates flat or declining

• Key challenge is to craft parallel programs that have 
high performance on multiprocessors as the number of 
processors increase – i.e. that scale

– Scheduling, load balancing, time for synchronization, 
overhead for communication

• Project #2: fastest power iteration (related to matmul) 
code on 8 processor (cores) computers

7/15/2014 Summer 2014 -- Lecture #13 42



Summary

• Performance programming
– With understanding of your computer’s 

architecture, can optimize code to take 
advantage of your system’s cache

– Especially useful for loops and arrays
– “Cache blocking” will improve speed of 

Matrix Multiply with appropriately-sized 
blocks

• Processors have hit the power wall, 
the only option is to go parallel

7/15/2014 Summer 2014 -- Lecture #13 43


	Slide 1
	Review of Last Lecture
	Slide 3
	Agenda
	Performance Programming
	Performance of Loops and Arrays
	Ex: Looping Performance (1/5)
	Ex: Looping Performance (2/5)
	Ex: Looping Performance (3/5)
	Ex: Looping Performance (4/5)
	Ex: Looping Performance (5/5)
	Agenda
	Administrivia
	Agenda
	Matrix Multiplication
	Naïve Matrix Multiply
	Matrices in Memory (1/2)
	Matrices in Memory (2/2)
	Naïve Matrix Multiply (cache view)
	Linear Algebra to the Rescue (1/2)
	Linear Algebra to the Rescue (2/2)
	Blocked Matrix Multiply
	Blocked Matrix Multiply (cache view)
	Matrix Multiply Comparison
	Maximum Block Size
	Get To Know Your Staff
	Agenda
	Six Great Ideas in Computer Architecture
	Technology Cost over Time
	Tech Cost: Successive Generations
	Tech Performance over Time
	Moore’s Law
	Great Idea #2: Moore’s Law
	End of Moore’s Law?
	Computer Technology: Growing, But More Slowly
	Memory Chip Size
	Uniprocessor Performance
	Limits to Performance: Faster Means More Power
	Dynamic Power
	Multicore Helps Energy Efficiency
	Transition to Multicore
	Parallelism - The Challenge
	Summary

