
Instructor:  Alan Christopher
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CS 61C: Great Ideas in 
Computer Architecture

Combinational and Sequential Logic,
Boolean Algebra



Review of Last Lecture

• OpenMP as simple parallel extension to C
– During parallel fork, be aware of which variables should be 

shared vs. private among threads
– Work-sharing accomplished with for/sections
– Synchronization accomplished with 
critical/atomic/reduction

• Hardware is made up of transistors and wires
– Transistors are voltage-controlled switches
– Building blocks of all higher-level blocks
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Synchronous Digital Systems
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Synchronous:
●  All operations coordinated by a central clock

● “Heartbeat” of the system!

Digital:
●   Represent all values with two discrete values
●   Electrical signals are treated as 1’s and 0’s

● 1 and 0 are complements of each other
●   High/Low voltage for True/False, 1/0

Hardware of a processor, such as with a MIPS processor, is 
an example of a Synchronous Digital System



•  Signals transmitted over wires continuously
•  Transmission is effectively instantaneous

● Implies that any wire only contains one value 
at any given time

Signals and Waveforms: Clocks
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Rising Edge Falling Edge

Clock period 
(CPU cycle time)



Signals and Waveforms
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All signals 
change after 
clock “triggers”

Stack 
signals 
on top 
of each 
other



Signals and Waveforms: Grouping

A group of wires 
when interpreted 
as a bit field is 
called a bus

X
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Clock triggers



system

datapath control

state
registers

combinational
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multiplexer comparator
code

registers

register logic

switching
networks

Hardware Design Hierarchy
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Today



Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus:  Karnaugh Maps (Optional)
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Type of Circuits

• Synchronous Digital Systems consist of 
two basic types of circuits:

– Combinational Logic (CL)
● Output is a function of the inputs only, not the 

history of its execution
● e.g. circuits to add A, B (ALUs)

– Sequential Logic (SL)
● Circuits that “remember” or store information
● a.k.a. “State Elements”
● e.g. memory and registers (Registers)
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Representations of 
Combinational Logic

• Circuit Diagram
– Transistors and wires (Lec 17)
– Logic Gates (Lec 18)

• Truth Table (Lec 18)

• Boolean Expression (Lec 18)

• All are equivalent
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Right Now!



Truth Tables

• Table that relates the inputs to a CL 
circuit to its output

– Output only depends on current inputs
– Use abstraction of 0/1 instead of 

high/low V
– Shows output for every possible 

combination of inputs

• How big?
– 0 or 1 for each of N inputs
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, so 2N rows



CL: General 
Form
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F Y

A

B

C

D 0

If N inputs, how many distinct 
functions F do we have? 

Function maps each row to 0 or 
1, so 2^(2N) possible functions



CL: Multiple Outputs
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•  For 3 outputs, just three separate functions: 
    X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)

●  Can show functions in separate columns without 
   adding any rows!

F Y

A

B

C

D

X

Z



Logic Gates (1/2)

• Special names and symbols:
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NOT

AND

OR

a b c
0 0 0
0 1 0
1 0 0
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a c
0 1
1 0

Circle means NOT!



Logic Gates (2/2)

• Special names and symbols:
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NAND

NOR

XOR

a b c
0 0 1
0 1 0
1 0 0
1 1 0

a b c
0 0 0
0 1 1
1 0 1
1 1 0

a b c
0 0 1
0 1 1
1 0 1
1 1 0



More Complicated Truth 
Tables

3-Input Majority

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2-bit Adder

A B C
a1 a0 b1 b0 c2 c1 c0

.

.

.
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+ c1

a1
a0
b1
b0

c2

c0

How 
many 
rows?

3 separate 
functions
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Question:  Convert the following statements into 
a Truth Table assuming the output is whether 
Frank is comfortable (1) or uncomfortable (0).
• Input X:  Frank wears light (0) or heavy (1) clothing
• Input Y:  It is cold (0) or hot (1) outside
• Input Z:  Frank spends the day indoors (0) or outdoors (1)

X Y Z (B) (G) (P) (Y)
0 0 0 1 1 1 1
0 0 1 0 0 0 0
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 0 1
1 1 0 1 1 1 0
1 1 1 1 0 1 1



My Hand Hurts…

• Truth tables are huge
– Write out EVERY combination of inputs 

and outputs (thorough, but inefficient)
– Finding a particular combination of 

inputs involves scanning a large portion 
of the table

• There must be a shorter way to 
represent combinational logic

– Boolean Algebra to the rescue!
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Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements

• Bonus:  Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 19



Administrivia

• Actually, nothing for today
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Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus:  Karnaugh Maps (Optional)
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Boolean Algebra

• Represent inputs and outputs as variables
– Each variable can only take on the value 0 or 1

• Overbar is NOT:  “logical complement”
– e.g. if A is 0, thenA is 1 and vice-versa

• Plus (+) is 2-input OR:  “logical sum”
• Product (·) is 2-input AND:  “logical product”

– All other gates and logical expressions can be built from 
combinations of these 

(e.g. A XOR B = AB +BA = A’B + AB’)
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For slides, 
will also use 
A’ forA



We can show that 
these
are equivalent!

Truth Table to Boolean 
Expression

• Read off of table
– For 1, write variable name
– For 0, write complement of variable

• Sum of Products (SoP)
– Take rows with 1’s in output column,

sum products of inputs
– c =ab +ba

• Product of Sums (PoS)
– Take rows with 0’s in output column, product the 

sum of the complements of the inputs
– c = ( a + b ) · (a +b )
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a b c
0 0 0
0 1 1
1 0 1
1 1 0



Manipulating Boolean 
Algebra

• SoP and PoS expressions can still be 
long

– We wanted to have shorter 
representation than a truth table!

• Boolean algebra follows a set of rules 
that allow for simplification

– Goal will be to arrive at the simplest 
equivalent expression

– Allows us to build simpler (and faster) 
hardware
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Faster Hardware?

• Recall:  Everything we are dealing with is 
just an abstraction of transistors and wires

– Inputs propagating to the outputs are voltage 
signals passing through transistor networks

– There is always some delay before a CL’s output 
updates to reflect the inputs

• Simpler Boolean expressions ↔ smaller 
transistor networks ↔ smaller circuit delays 
↔ faster hardware
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Combinational Logic Circuit Delay

2

3

3 4 5

10 0 1

5 13 4 6

7/23/2014 Summer 2014 -- Lecture #18 26

Symbol for
a bus (and width)

Combinational Logic 
delay



Laws of Boolean Algebra
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These laws allow us to perform simplification:



Boolean Algebraic 
Simplification Example
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Circuit Simplification
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      (Transistors and/or Gates)1)

2)

3)

4)



Converting Combinational Logic
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Circuit
Diagram

Truth
Table

Boolean
Expression

This is difficult to 
do efficiently!

Try all input 
combinations

So
P 

or
 P

oS

W
ire inputs to proper  gates

(easiest to use AND
, O

R, and 

NO
T)

Tr
y 

al
l i

np
ut

 

co
m

bi
na

tio
ns

Propagate signals

through gates



Circuit Simplification Example (1/4)

• Simplify the following circuit:

• Options:
– Test all combinations of the inputs and build 

the Truth Table, then use SoP or PoS
– Write out expressions for signals based on 

gates
● Will show this method here
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A
B

C

D



Circuit Simplification Example (2/4)

• Simplify the following circuit:

• Start from left, propagate signals to 
the right

• Arrive at D = (AB)’(A + B’C)
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A
B

C

DA

C

B’

B

A
AB

B’C

(AB)’

A+B’C



Circuit Simplification Example (3/4)

• Simplify Expression:
       D = (AB)’(A + B’C)

= (A’ + B’)(A + B’C) DeMorgan’s

= A’A + A’B’C + B’A + B’B’C Distribution

= 0 + A’B’C + B’A + B’B’C Complementarity

= A’B’C + B’A + B’C Idempotent Law

= (A’ + 1)B’C + AB’ Distribution

= B’C + AB’ Law of 1’s

= B’(A + C) Distribution
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Which of these
is “simpler”?



Circuit Simplification Example (4/4)

• Draw out final circuit:
– D = B’C + AB’ = B’(A + C)

• Simplified Circuit:

– Reduction from 6 gates to 3!
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How many gates
do we need for each?

4 3

A

B

C

D



Karnaugh Maps (Optional)

• Lots of Boolean Algebra laws for simplification
– Difficult to memorize and spot applications
– When do you know if in simplest form?

● Basically, when you can't reduce it any further
● Not a great system when you're still new to 

boolean algebra

• Karnaugh Maps (K-maps) are an alternate way to 
simplify Boolean Algebra

– This technique is normally taught in CS150
– We will never ask you to use a K-map to solve a 

problem, but you may find it faster/easier if you 
choose to learn how to use it (see Bonus Slides)
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Question:  What is the MOST 
simplified Boolean Algebra expression 
for the following circuit?

B (A + C)(B)
B + AC(G)
AB + B + C(P)
A + C(Y)



Technology Break

7/23/2014 Summer 2014 -- Lecture #18 37



Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus:  Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 38



Type of Circuits

• Synchronous Digital Systems consist of 
two basic types of circuits:

– Combinational Logic (CL)
● Output is a function of the inputs only, not the 

history of its execution
● e.g. circuits to add A, B (ALUs)

– Sequential Logic (SL)
● Circuits that “remember” or store information
● a.k.a. “State Elements”
● e.g. memory and registers (Registers)
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Uses for State Elements

• Place to store values for some amount of 
time:

– Register files (like in MIPS)
– Memory (caches and main memory)

• Help control flow of information between 
combinational logic blocks

– State elements are used to hold up the 
movement of information at the inputs to 
combinational logic blocks and allow for 
orderly passage
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Want:  
S=0; 
for X1,X2,X3 over time... 
          S = S + Xi

An example of why we would need to control 
the flow of information.

Assume:
●  Each X value is applied in succession, one per cycle
●  The sum since time 1 (cycle) is present on S

SUMXi S

Accumulator Example
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No! 
1) How to control the next iteration of the 

‘for’ loop?
2) How do we say: ‘S=0’?

Feedback

X

First Try: Does this work?
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Rough
timing …

Time

Second Try: How About 
This?

A Register is the state 
element that is used here 
to hold up the transfer 
of data to the adder

Delay through Register and Adder
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• n instances of a “Flip-Flop”
– Output flips and flops between 0 and 1

• Specifically this is a “D-type Flip-Flop”
– D is “data input”, Q is “data output”
– In reality, has 2 outputs (Q andQ), but we 

only care about 1
• http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Register Internals

http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops


Flip-Flop Timing Behavior (1/2)

• Edge-triggered D-type flip-flop
– This one is “positive edge-triggered”

• “On the rising edge of the clock, input d is sampled and 
transferred to the output. At other times, the input d is 
ignored and the previously sampled value is retained.”

• Example waveforms:

45



Flip-Flop Timing Terminology (1/2)

• Camera Analogy:  Taking a photo
– Setup time:  don’t move since about to 

take picture (open camera shutter)
– Hold time:  need to hold still after 

shutter opens until camera shutter 
closes

– Time to data:  time from open shutter 
until image appears on the output 
(viewfinder)
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Flip-Flop Timing Terminology (2/2)

• Now applied to hardware:
– Setup Time:  how long the input must be 

stable before the CLK trigger for proper 
input read

– Hold Time:  how long the input must be 
stable after the CLK trigger for proper 
input read

– “CLK-to-Q” Delay:  how long it takes the 
output to change, measured from the 
CLK trigger
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• Edge-triggered d-type flip-flop
– This one is “positive edge-triggered”

• “On the rising edge of the clock, input d is sampled 
and transferred to the output. At other times, the 
input d is ignored  and the previously sampled 
value is retained.”
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Flip-Flop Timing Behavior (2/2)



Accumulator Revisited
Proper Timing (2/2)
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• reset signal shown
• Also, in practice Xi might not arrive to 

the adder at the same time as Si-1
• Si temporarily is wrong, but register 

always captures correct value
• In good circuits, instability never 

happens around rising edge of CLK

“Undefined” (unknown) signal



Summary

• Hardware systems are constructed from Stateless 
Combinational Logic and Stateful “Memory” Logic 
(registers)

• Voltages are analog, but quantized to represent 
logical 0’s and 1’s

• Combinational Logic:  equivalent circuit diagrams, 
truth tables, and Boolean expressions

– Boolean Algebra allows minimization of gates

• State registers implemented from Flip-flops
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Special Bonus Slides:  You are NOT 
responsible for the material contained 
on the following slides!!!  You may, 
however, find it useful to read anyway.
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Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus:  Karnaugh Maps (Optional)
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Karnaugh Maps (Optional)

• Again, this is completely OPTIONAL material
– Recommended you use .pptx to view animations

• Karnaugh Maps (K-maps) are an alternate way to 
simplify Boolean Algebra

– This technique is normally taught in CS150
– We will never ask you to use a K-map to solve a problem, but 

you may find it faster/easier if you choose to learn how to use 
it

• For more info, see: 
http://en.wikipedia.org/wiki/Karnaugh_map
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http://en.wikipedia.org/wiki/Karnaugh_map


Underlying Idea

• Using Sum of Products, “neighboring” input 
combinations simplify

– “Neighboring”:  inputs that differ by a single 
signal

– e.g.  ab + a’b = b,  a’bc + a’bc’ = a’b,  etc.
– Recall:  Each product only appears where 

there is a 1 in the output column

• Idea:  Let’s write out our Truth Table such 
that the neighbors become apparent!

– Need a Karnaugh map for EACH output
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Reorganizing the Truth Table

• Split inputs into 2 evenly-sized groups
– One group will have an extra if an odd # of inputs

• Write out all combinations of one group 
horizontally and all combinations of the other 
group vertically

– Group of n inputs → 2n combinations
– Successive combinations change only 1 input

2 Inputs: 3 Inputs:
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00 01 11 10

0

1

0 1

0

1

A
B AB

C



K-map:  Majority Circuit 
(1/2)
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a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

00 01 11 10

0

1

0
0
0
1
0
1
1
1

ab
c

0

0

0

0

0

1

0

1

1

1

1

1

0

1

0

1
•  Each row of truth table corresponds to ONE 
cell of Karnaugh map

•  Recommended you view the animation on 
this slide on the Powerpoint (pptx)

•  Note the funny jump when you go from input 
011 to 100 (most mistakes made here)

•  Filling in the Karnaugh map:



•  Group neighboring 1’s so all are accounted 
for:

●   Each group of
    neighbors becomes
    a product term in
    output

•  y =

•  Larger groups become smaller terms
●   The single 1 in top row  --> abc’
●   Vertical group of two 1’s  -->  ab
●   If entire lower row was 1’s  -->  c

bc

K-map:  Majority Circuit (2/2)
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00 01 11 10

0

1

ab
c

0

0

0

1

1

1

0

1
bc+ ab + ac+ ab + ac

Single cell 
can be part 

of many 
groups



General K-map Rules

• Only group in powers of 2
– Grouping should be of size 2i × 2j
– Applies for both directions

• Wraps around in all directions
– “Corners” case is extreme example

• Always choose largest groupings 
possible

– Avoid single cells whenever possible

• y =
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00 01 11 10

00 1 0 0 1
01 0 1 1 0
11 0 1 1 1
10 1 0 0 1

ab
cd

1) NOT a valid group
2) IS a valid group
3) IS a valid group
4) “Corners” case
5) 1 of 2 good choices 

here 
(spot the other?)

bd+ b’d’+ acd
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