
Instructor: Alan Christopher

7/23/2014 Summer 2014 -- Lecture #18 1

CS 61C: Great Ideas in
Computer Architecture

Combinational and Sequential Logic,
Boolean Algebra

Review of Last Lecture

• OpenMP as simple parallel extension to C
– During parallel fork, be aware of which variables should be

shared vs. private among threads
– Work-sharing accomplished with for/sections
– Synchronization accomplished with
critical/atomic/reduction

• Hardware is made up of transistors and wires
– Transistors are voltage-controlled switches
– Building blocks of all higher-level blocks

7/23/2014 Summer 2014 -- Lecture #18 2

Synchronous Digital Systems

7/23/2014 Summer 2014 -- Lecture #18 3

Synchronous:
● All operations coordinated by a central clock

● “Heartbeat” of the system!

Digital:
● Represent all values with two discrete values
● Electrical signals are treated as 1’s and 0’s

● 1 and 0 are complements of each other
● High/Low voltage for True/False, 1/0

Hardware of a processor, such as with a MIPS processor, is
an example of a Synchronous Digital System

• Signals transmitted over wires continuously
• Transmission is effectively instantaneous

● Implies that any wire only contains one value
at any given time

Signals and Waveforms: Clocks

7/23/2014 4Summer 2014 -- Lecture #18

Rising Edge Falling Edge

Clock period
(CPU cycle time)

Signals and Waveforms

7/23/2014 5Summer 2014 -- Lecture #18

All signals
change after
clock “triggers”

Stack
signals
on top
of each
other

Signals and Waveforms: Grouping

A group of wires
when interpreted
as a bit field is
called a bus

X

7/23/2014 6Summer 2014 -- Lecture #18

Clock triggers

system

datapath control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

Hardware Design Hierarchy

7/23/2014 7Summer 2014 -- Lecture #18

Today

Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus: Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 8

Type of Circuits

• Synchronous Digital Systems consist of
two basic types of circuits:

– Combinational Logic (CL)
● Output is a function of the inputs only, not the

history of its execution
● e.g. circuits to add A, B (ALUs)

– Sequential Logic (SL)
● Circuits that “remember” or store information
● a.k.a. “State Elements”
● e.g. memory and registers (Registers)

7/23/2014 Summer 2014 -- Lecture #18 9

Representations of
Combinational Logic

• Circuit Diagram
– Transistors and wires (Lec 17)
– Logic Gates (Lec 18)

• Truth Table (Lec 18)

• Boolean Expression (Lec 18)

• All are equivalent

7/23/2014 Summer 2014 -- Lecture #18 10

Right Now!

Truth Tables

• Table that relates the inputs to a CL
circuit to its output

– Output only depends on current inputs
– Use abstraction of 0/1 instead of

high/low V
– Shows output for every possible

combination of inputs

• How big?
– 0 or 1 for each of N inputs

7/23/2014 Summer 2014 -- Lecture #18 11

, so 2N rows

CL: General
Form

7/23/2014 Summer 2014 -- Lecture #18 12

F Y

A

B

C

D 0

If N inputs, how many distinct
functions F do we have?

Function maps each row to 0 or
1, so 2^(2N) possible functions

CL: Multiple Outputs

7/23/2014 Summer 2014 -- Lecture #18 13

• For 3 outputs, just three separate functions:
 X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)

● Can show functions in separate columns without
 adding any rows!

F Y

A

B

C

D

X

Z

Logic Gates (1/2)

• Special names and symbols:

7/23/2014 Summer 2014 -- Lecture #18 14

NOT

AND

OR

a b c
0 0 0
0 1 0
1 0 0
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a c
0 1
1 0

Circle means NOT!

Logic Gates (2/2)

• Special names and symbols:

7/23/2014 Summer 2014 -- Lecture #18 15

NAND

NOR

XOR

a b c
0 0 1
0 1 0
1 0 0
1 1 0

a b c
0 0 0
0 1 1
1 0 1
1 1 0

a b c
0 0 1
0 1 1
1 0 1
1 1 0

More Complicated Truth
Tables

3-Input Majority

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2-bit Adder

A B C
a1 a0 b1 b0 c2 c1 c0

.

.

.

7/23/2014 Summer 2014 -- Lecture #18 16

+ c1

a1
a0
b1
b0

c2

c0

How
many
rows?

3 separate
functions

17

Question: Convert the following statements into
a Truth Table assuming the output is whether
Frank is comfortable (1) or uncomfortable (0).
• Input X: Frank wears light (0) or heavy (1) clothing
• Input Y: It is cold (0) or hot (1) outside
• Input Z: Frank spends the day indoors (0) or outdoors (1)

X Y Z (B) (G) (P) (Y)
0 0 0 1 1 1 1
0 0 1 0 0 0 0
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 0 1
1 1 0 1 1 1 0
1 1 1 1 0 1 1

My Hand Hurts…

• Truth tables are huge
– Write out EVERY combination of inputs

and outputs (thorough, but inefficient)
– Finding a particular combination of

inputs involves scanning a large portion
of the table

• There must be a shorter way to
represent combinational logic

– Boolean Algebra to the rescue!

7/23/2014 Summer 2014 -- Lecture #18 18

Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements

• Bonus: Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 19

Administrivia

• Actually, nothing for today

7/23/2014 Summer 2014 -- Lecture #18 20

Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus: Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 21

Boolean Algebra

• Represent inputs and outputs as variables
– Each variable can only take on the value 0 or 1

• Overbar is NOT: “logical complement”
– e.g. if A is 0, thenA is 1 and vice-versa

• Plus (+) is 2-input OR: “logical sum”
• Product (·) is 2-input AND: “logical product”

– All other gates and logical expressions can be built from
combinations of these

(e.g. A XOR B = AB +BA = A’B + AB’)

7/23/2014 Summer 2014 -- Lecture #18 22

For slides,
will also use
A’ forA

We can show that
these
are equivalent!

Truth Table to Boolean
Expression

• Read off of table
– For 1, write variable name
– For 0, write complement of variable

• Sum of Products (SoP)
– Take rows with 1’s in output column,

sum products of inputs
– c =ab +ba

• Product of Sums (PoS)
– Take rows with 0’s in output column, product the

sum of the complements of the inputs
– c = (a + b) · (a +b)

7/23/2014 Summer 2014 -- Lecture #18 23

a b c
0 0 0
0 1 1
1 0 1
1 1 0

Manipulating Boolean
Algebra

• SoP and PoS expressions can still be
long

– We wanted to have shorter
representation than a truth table!

• Boolean algebra follows a set of rules
that allow for simplification

– Goal will be to arrive at the simplest
equivalent expression

– Allows us to build simpler (and faster)
hardware

7/23/2014 Summer 2014 -- Lecture #18 24

Faster Hardware?

• Recall: Everything we are dealing with is
just an abstraction of transistors and wires

– Inputs propagating to the outputs are voltage
signals passing through transistor networks

– There is always some delay before a CL’s output
updates to reflect the inputs

• Simpler Boolean expressions ↔ smaller
transistor networks ↔ smaller circuit delays
↔ faster hardware

7/23/2014 Summer 2014 -- Lecture #18 25

Combinational Logic Circuit Delay

2

3

3 4 5

10 0 1

5 13 4 6

7/23/2014 Summer 2014 -- Lecture #18 26

Symbol for
a bus (and width)

Combinational Logic
delay

Laws of Boolean Algebra

7/23/2014 Summer 2014 -- Lecture #18 27

These laws allow us to perform simplification:

Boolean Algebraic
Simplification Example

7/23/2014 Summer 2014 -- Lecture #18 28

Circuit Simplification

7/23/2014 Summer 2014 -- Lecture #18 29

 (Transistors and/or Gates)1)

2)

3)

4)

Converting Combinational Logic

7/23/2014 Summer 2014 -- Lecture #18 30

Circuit
Diagram

Truth
Table

Boolean
Expression

This is difficult to
do efficiently!

Try all input
combinations

So
P

or
 P

oS

W
ire inputs to proper gates

(easiest to use AND
, O

R, and

NO
T)

Tr
y

al
l i

np
ut

co
m

bi
na

tio
ns

Propagate signals

through gates

Circuit Simplification Example (1/4)

• Simplify the following circuit:

• Options:
– Test all combinations of the inputs and build

the Truth Table, then use SoP or PoS
– Write out expressions for signals based on

gates
● Will show this method here

7/23/2014 Summer 2014 -- Lecture #18 31

A
B

C

D

Circuit Simplification Example (2/4)

• Simplify the following circuit:

• Start from left, propagate signals to
the right

• Arrive at D = (AB)’(A + B’C)

7/23/2014 Summer 2014 -- Lecture #18 32

A
B

C

DA

C

B’

B

A
AB

B’C

(AB)’

A+B’C

Circuit Simplification Example (3/4)

• Simplify Expression:
 D = (AB)’(A + B’C)

= (A’ + B’)(A + B’C) DeMorgan’s

= A’A + A’B’C + B’A + B’B’C Distribution

= 0 + A’B’C + B’A + B’B’C Complementarity

= A’B’C + B’A + B’C Idempotent Law

= (A’ + 1)B’C + AB’ Distribution

= B’C + AB’ Law of 1’s

= B’(A + C) Distribution

7/23/2014 Summer 2014 -- Lecture #18 33

Which of these
is “simpler”?

Circuit Simplification Example (4/4)

• Draw out final circuit:
– D = B’C + AB’ = B’(A + C)

• Simplified Circuit:

– Reduction from 6 gates to 3!

7/23/2014 Summer 2014 -- Lecture #18 34

How many gates
do we need for each?

4 3

A

B

C

D

Karnaugh Maps (Optional)

• Lots of Boolean Algebra laws for simplification
– Difficult to memorize and spot applications
– When do you know if in simplest form?

● Basically, when you can't reduce it any further
● Not a great system when you're still new to

boolean algebra

• Karnaugh Maps (K-maps) are an alternate way to
simplify Boolean Algebra

– This technique is normally taught in CS150
– We will never ask you to use a K-map to solve a

problem, but you may find it faster/easier if you
choose to learn how to use it (see Bonus Slides)

7/23/2014 Summer 2014 -- Lecture #18 35

36

Question: What is the MOST
simplified Boolean Algebra expression
for the following circuit?

B (A + C)(B)
B + AC(G)
AB + B + C(P)
A + C(Y)

Technology Break

7/23/2014 Summer 2014 -- Lecture #18 37

Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus: Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 38

Type of Circuits

• Synchronous Digital Systems consist of
two basic types of circuits:

– Combinational Logic (CL)
● Output is a function of the inputs only, not the

history of its execution
● e.g. circuits to add A, B (ALUs)

– Sequential Logic (SL)
● Circuits that “remember” or store information
● a.k.a. “State Elements”
● e.g. memory and registers (Registers)

7/23/2014 Summer 2014 -- Lecture #18 39

Uses for State Elements

• Place to store values for some amount of
time:

– Register files (like in MIPS)
– Memory (caches and main memory)

• Help control flow of information between
combinational logic blocks

– State elements are used to hold up the
movement of information at the inputs to
combinational logic blocks and allow for
orderly passage

7/23/2014 Summer 2014 -- Lecture #18 40

7/23/2014 Summer 2014 -- Lecture #18 41

Want:
S=0;
for X1,X2,X3 over time...
 S = S + Xi

An example of why we would need to control
the flow of information.

Assume:
● Each X value is applied in succession, one per cycle
● The sum since time 1 (cycle) is present on S

SUMXi S

Accumulator Example

7/23/2014 Summer 2014 -- Lecture #18 42

No!
1) How to control the next iteration of the

‘for’ loop?
2) How do we say: ‘S=0’?

Feedback

X

First Try: Does this work?

7/23/2014 Summer 2014 -- Lecture #18 43

Rough
timing …

Time

Second Try: How About
This?

A Register is the state
element that is used here
to hold up the transfer
of data to the adder

Delay through Register and Adder

7/23/2014 Summer 2014 -- Lecture #18 44

• n instances of a “Flip-Flop”
– Output flips and flops between 0 and 1

• Specifically this is a “D-type Flip-Flop”
– D is “data input”, Q is “data output”
– In reality, has 2 outputs (Q andQ), but we

only care about 1
• http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Register Internals

http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Flip-Flop Timing Behavior (1/2)

• Edge-triggered D-type flip-flop
– This one is “positive edge-triggered”

• “On the rising edge of the clock, input d is sampled and
transferred to the output. At other times, the input d is
ignored and the previously sampled value is retained.”

• Example waveforms:

45

Flip-Flop Timing Terminology (1/2)

• Camera Analogy: Taking a photo
– Setup time: don’t move since about to

take picture (open camera shutter)
– Hold time: need to hold still after

shutter opens until camera shutter
closes

– Time to data: time from open shutter
until image appears on the output
(viewfinder)

7/23/2014 Summer 2014 -- Lecture #18 46

Flip-Flop Timing Terminology (2/2)

• Now applied to hardware:
– Setup Time: how long the input must be

stable before the CLK trigger for proper
input read

– Hold Time: how long the input must be
stable after the CLK trigger for proper
input read

– “CLK-to-Q” Delay: how long it takes the
output to change, measured from the
CLK trigger

7/23/2014 47Summer 2014 -- Lecture #18

• Edge-triggered d-type flip-flop
– This one is “positive edge-triggered”

• “On the rising edge of the clock, input d is sampled
and transferred to the output. At other times, the
input d is ignored and the previously sampled
value is retained.”

7/23/2014 Summer 2014 -- Lecture #18 48

Flip-Flop Timing Behavior (2/2)

Accumulator Revisited
Proper Timing (2/2)

7/23/2014 Summer 2014 -- Lecture #18 49

• reset signal shown
• Also, in practice Xi might not arrive to

the adder at the same time as Si-1
• Si temporarily is wrong, but register

always captures correct value
• In good circuits, instability never

happens around rising edge of CLK

“Undefined” (unknown) signal

Summary

• Hardware systems are constructed from Stateless
Combinational Logic and Stateful “Memory” Logic
(registers)

• Voltages are analog, but quantized to represent
logical 0’s and 1’s

• Combinational Logic: equivalent circuit diagrams,
truth tables, and Boolean expressions

– Boolean Algebra allows minimization of gates

• State registers implemented from Flip-flops

7/23/2014 Summer 2014 -- Lecture #18 50

Special Bonus Slides: You are NOT
responsible for the material contained
on the following slides!!! You may,
however, find it useful to read anyway.

7/23/2014 Summer 2014 -- Lecture #18 51

Agenda

• Combinational Logic
– Truth Tables and Logic Gates

• Administrivia
• Boolean Algebra
• Sequential Logic

– State Elements
– Bonus: Karnaugh Maps (Optional)

7/23/2014 Summer 2014 -- Lecture #18 52

Karnaugh Maps (Optional)

• Again, this is completely OPTIONAL material
– Recommended you use .pptx to view animations

• Karnaugh Maps (K-maps) are an alternate way to
simplify Boolean Algebra

– This technique is normally taught in CS150
– We will never ask you to use a K-map to solve a problem, but

you may find it faster/easier if you choose to learn how to use
it

• For more info, see:
http://en.wikipedia.org/wiki/Karnaugh_map

7/23/2014 Summer 2014 -- Lecture #18 53

http://en.wikipedia.org/wiki/Karnaugh_map

Underlying Idea

• Using Sum of Products, “neighboring” input
combinations simplify

– “Neighboring”: inputs that differ by a single
signal

– e.g. ab + a’b = b, a’bc + a’bc’ = a’b, etc.
– Recall: Each product only appears where

there is a 1 in the output column

• Idea: Let’s write out our Truth Table such
that the neighbors become apparent!

– Need a Karnaugh map for EACH output

7/23/2014 Summer 2014 -- Lecture #18 54

Reorganizing the Truth Table

• Split inputs into 2 evenly-sized groups
– One group will have an extra if an odd # of inputs

• Write out all combinations of one group
horizontally and all combinations of the other
group vertically

– Group of n inputs → 2n combinations
– Successive combinations change only 1 input

2 Inputs: 3 Inputs:

7/23/2014 Summer 2014 -- Lecture #18 55

00 01 11 10

0

1

0 1

0

1

A
B AB

C

K-map: Majority Circuit
(1/2)

7/23/2014 Summer 2014 -- Lecture #18 56

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

00 01 11 10

0

1

0
0
0
1
0
1
1
1

ab
c

0

0

0

0

0

1

0

1

1

1

1

1

0

1

0

1
• Each row of truth table corresponds to ONE
cell of Karnaugh map

• Recommended you view the animation on
this slide on the Powerpoint (pptx)

• Note the funny jump when you go from input
011 to 100 (most mistakes made here)

• Filling in the Karnaugh map:

• Group neighboring 1’s so all are accounted
for:

● Each group of
 neighbors becomes
 a product term in
 output

• y =

• Larger groups become smaller terms
● The single 1 in top row --> abc’
● Vertical group of two 1’s --> ab
● If entire lower row was 1’s --> c

bc

K-map: Majority Circuit (2/2)

7/23/2014 Summer 2014 -- Lecture #18 57

00 01 11 10

0

1

ab
c

0

0

0

1

1

1

0

1
bc+ ab + ac+ ab + ac

Single cell
can be part

of many
groups

General K-map Rules

• Only group in powers of 2
– Grouping should be of size 2i × 2j
– Applies for both directions

• Wraps around in all directions
– “Corners” case is extreme example

• Always choose largest groupings
possible

– Avoid single cells whenever possible

• y =

7/23/2014 Summer 2014 -- Lecture #18 58

00 01 11 10

00 1 0 0 1
01 0 1 1 0
11 0 1 1 1
10 1 0 0 1

ab
cd

1) NOT a valid group
2) IS a valid group
3) IS a valid group
4) “Corners” case
5) 1 of 2 good choices

here
(spot the other?)

bd+ b’d’+ acd

	Slide 1
	Review of Last Lecture
	Synchronous Digital Systems
	Signals and Waveforms: Clocks
	Signals and Waveforms
	Signals and Waveforms: Grouping
	Hardware Design Hierarchy
	Agenda
	Type of Circuits
	Representations of Combinational Logic
	Truth Tables
	CL: General Form
	CL: Multiple Outputs
	Logic Gates (1/2)
	Logic Gates (2/2)
	More Complicated Truth Tables
	Slide 17
	My Hand Hurts…
	Agenda
	Administrivia
	Agenda
	Boolean Algebra
	Truth Table to Boolean Expression
	Manipulating Boolean Algebra
	Faster Hardware?
	Combinational Logic Circuit Delay
	Laws of Boolean Algebra
	Boolean Algebraic Simplification Example
	Circuit Simplification
	Converting Combinational Logic
	Circuit Simplification Example (1/4)
	Circuit Simplification Example (2/4)
	Circuit Simplification Example (3/4)
	Circuit Simplification Example (4/4)
	Karnaugh Maps (Optional)
	Slide 36
	Get To Know Your Staff
	Agenda
	Type of Circuits
	Uses for State Elements
	Accumulator Example
	First Try: Does this work?
	Second Try: How About This?
	Register Internals
	Flip-Flop Timing Behavior (1/2)
	Flip-Flop Timing Terminology (1/2)
	Flip-Flop Timing Terminology (2/2)
	Flip-Flop Timing Behavior (2/2)
	Accumulator Revisited Proper Timing (2/2)
	Summary
	Slide 51
	Agenda
	Karnaugh Maps (Optional)
	Underlying Idea
	Reorganizing the Truth Table
	K-map: Majority Circuit (1/2)
	K-map: Majority Circuit (2/2)
	General K-map Rules

