CS 61C: Great Ideas in Computer Architecture

Combinational and Sequential Logic, Boolean Algebra

Instructor: Alan Christopher

Review of Last Lecture

- OpenMP as simple parallel extension to C
- During parallel fork, be aware of which variables should be shared vs. private among threads
- Work-sharing accomplished with for/sections
- Synchronization accomplished with critical/atomic/reduction
- Hardware is made up of transistors and wires
- Transistors are voltage-controlled switches
- Building blocks of all higher-level blocks

Synchronous Digital Systems

Hardware of a processor, such as with a MIPS processor, is an example of a Synchronous Digital System

Synchronous:

- All operations coordinated by a central clock
- "Heartbeat" of the system!

Digital:

- Represent all values with two discrete values
- Electrical signals are treated as 1's and 0's
- 1 and 0 are complements of each other
- High/Low voltage for True/False, 1/0

Signals and Waveforms: Clocks

- Signals transmitted over wires continuously
- Transmission is effectively instantaneous
- Implies that any wire only contains one value at any given time

Signals and Waveforms

7/23/2014
Summer 2014 -- Lecture \#18

Signals and Waveforms: Grouping

Hardware Design Hierarchy

Agenda

- Combinational Logic
- Truth Tables and Logic Gates
- Administrivia
- Boolean Algebra
- Sequential Logic
- State Elements
- Bonus: Karnaugh Maps (Optional)

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
- Combinational Logic (CL)
- Output is a function of the inputs only, not the history of its execution
- e.g. circuits to add A, B (ALUs)
- Sequential Logic (SL)
- Circuits that "remember" or store information
- a.k.a. "State Elements"
- e.g. memory and registers (Registers)

Representations of Combinational Logic

- Circuit Diagram
- Transistors and wires
$\left.\begin{array}{l}\text { (Lec 17) } \\ \text { (Lec 18) } \\ \text { (Lec 18) } \\ \text { (Lec 18) }\end{array}\right\}$ Right Now!
- All are equivalent

Truth Tables

- Table that relates the inputs to a CL circuit to its output
- Output only depends on current inputs
- Use abstraction of 0/1 instead of high/low V
- Shows output for every possible combination of inputs
- How big?
- 0 or 1 for each of N inputs, so 2^{N} rows

CL: General Form

If N inputs, how many distinct functions F do we have?

Function maps each row to 0 or 1 , so $2^{\wedge}\left(2^{\mathrm{N}}\right)$ possible functions

a	b	c	d	y
0	0	0	0	$\mathrm{~F}(0,0,0,0)$
0	0	0	1	$\mathrm{~F}(0,0,0,1)$
0	0	1	0	$\mathrm{~F}(0,0,1,0)$
0	0	1	1	$\mathrm{~F}(0,0,1,1)$
0	1	0	0	$\mathrm{~F}(0,1,0,0)$
0	1	0	1	$\mathrm{~F}(0,1,0,1)$
0	1	1	0	$\mathrm{~F}(0,1,1,0)$
0	1	1	1	$\mathrm{~F}(0,1,1,1)$
1	0	0	0	$\mathrm{~F}(1,0,0,0)$
1	0	0	1	$\mathrm{~F}(1,0,0,1)$
1	0	1	0	$\mathrm{~F}(1,0,1,0)$
1	0	1	1	$\mathrm{~F}(1,0,1,1)$
1	1	0	0	$\mathrm{~F}(1,1,0,0)$
1	1	0	1	$\mathrm{~F}(1,1,0,1)$
1	1	1	0	$\mathrm{~F}(1,1,1,0)$
1	1	1	1	$\mathrm{~F}(1,1,1,1)$

CL: Multiple Outputs

- For 3 outputs, just three separate functions: $X(A, B, C, D), Y(A, B, C, D)$, and $Z(A, B, C, D)$
- Can show functions in separate columns without adding any rows!

Logic Gates (1/2)

- Special names and symbols:

AND

\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	0
0	1	1
1	0	1
1	1	1

Logic Gates (2/2)

- Special names and symbols:
NAND

\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	1
0	1	1
1	0	1
1	1	0

\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	1
0	1	0
1	0	0
1	1	0

\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	0
0	1	1
1	0	1
1	1	0

More Complicated Truth

 Tables
3-Input Majority

2-bit Adder

Question: Convert the following statements into a Truth Table assuming the output is whether Frank is comfortable (1) or uncomfortable (0).

- Input X: Frank wears light (0) or heavy (1) clothing
- Input Y: It is cold (0) or hot (1) outside
- Input Z: Frank spends the day indoors (0) or outdoors (1)

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{(B)}$	$\mathbf{(\mathbf { G })}$	$\mathbf{(P)}$	(\mathbf{Y})
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	1	0	1	1

My Hand Hurts...

- Truth tables are huge
- Write out EVERY combination of inputs and outputs (thorough, but inefficient)
- Finding a particular combination of inputs involves scanning a large portion of the table
- There must be a shorter way to represent combinational logic
- Boolean Algebra to the rescue!

Agenda

- Combinational Logic
- Truth Tables and Logic Gates
- Administrivia
- Boolean Algebra
- Sequential Logic
- State Elements
- Bonus: Karnaugh Maps (Optional)

Administrivia

- Actually, nothing for today

Agenda

- Combinational Logic
- Truth Tables and Logic Gates
- Administrivia
- Boolean Algebra
- Sequential Logic
- State Elements
- Bonus: Karnaugh Maps (Optional)

Boolean Algebra

- Represent inputs and outputs as variables
- Each variable can only take on the value 0 or 1
- Overbar is NOT: "logical complement"
- e.g. if A is 0 , then A is 1 and vice-versa
- Plus $(+)$ is 2-input OR: "logical sum"
- Product (•) is 2-input AND: "logical product"
- All other gates and logical expressions can be built from combinations of these

$$
\text { (e.g. } \left.A \text { XOR } B=\bar{A} B+\bar{B} A=A^{\prime} B+A B^{\prime}\right)
$$

Truth Table to Boolean

Expression

- Read off of table
- For 1, write variable name
- For 0, write complement of variable
- Sum of Products (SoP)
- Take rows with 1's in output column,
 sum products of inputs
- $c=\bar{a} b+\bar{b} a$
- Product of Sums (PoS)
- Take rows with 0's in output column, product the sum of the complements of the inputs
$-c=(a+b) \cdot(a+b)$

Manipulating Boolean Algebra

- SoP and PoS expressions can still be long
- We wanted to have shorter representation than a truth table!
- Boolean algebra follows a set of rules that allow for simplification
- Goal will be to arrive at the simplest equivalent expression
- Allows us to build simpler (and faster) hardware

Faster Hardware?

- Recall: Everything we are dealing with is just an abstraction of transistors and wires
- Inputs propagating to the outputs are voltage signals passing through transistor networks
- There is always some delay before a CL's output updates to reflect the inputs
- Simpler Boolean expressions \leftrightarrow smaller transistor networks \leftrightarrow smaller circuit delays \leftrightarrow faster hardware

Combinational Logic Circuit Delay

Symbol for
a bus (and width)
A
B

C

Laws of Boolean Algebra

These laws allow us to perform simplification:

$$
\begin{gathered}
x \cdot \bar{x}=0 \\
x \cdot 0=0 \\
x \cdot 1=x \\
x \cdot x=x \\
x \cdot y=y \cdot x \\
(x y) z=x(y z) \\
x(y+z)=x y+x z \\
x y+x=x \\
\bar{x} y+x=x+y \\
\bar{x} \cdot y=\bar{x}+\bar{y}
\end{gathered}
$$

$$
\begin{gathered}
x+\bar{x}=1 \\
x+1=1 \\
x+0=x \\
x+x=x \\
x+y=y+x \\
(x+y)+z=x+(y+z) \\
x+y z=(x+y)(x+z) \\
(x+y) x=x \\
(\bar{x}+y) x=x y \\
\overline{x+y}=\bar{x} \cdot \bar{y}
\end{gathered}
$$

complementarity laws of 0 's and 1's identities
idempotent law
commutativity
associativity
distribution
uniting theorem
uniting theorem v. 2
DeMorgan's Law

Boolean Algebraic Simplification Example

$y=a b+a+c$

Circuit Simplification

1) original circuit (Transistors and/or Gates)
2) equation derived from original circuit
3) algebraic simplification
4) simplified circuit

Converting Combinational Logic

Circuit Simplification Example (1/4)

- Simplify the following circuit:

- Options:
- Test all combinations of the inputs and build the Truth Table, then use SoP or PoS
- Write out expressions for signals based on gates
- Will show this method here

Circuit Simplification Example (2/4)

- Simplify the following circuit:

- Start from left, propagate signals to the right
- Arrive at $D=(A B)^{\prime}\left(A+B^{\prime} C\right)$

Circuit Simplification Example (3/4)

- Simplify Expression:

$$
\begin{aligned}
& D \quad=(A B)^{\prime}\left(A+B^{\prime} C\right) \\
= & \\
= & \left(A^{\prime}+B^{\prime}\right)\left(A+B^{\prime} C\right) \\
=A^{\prime} A+A^{\prime} B^{\prime} C+B^{\prime} A+B^{\prime} B^{\prime} C & \text { DeMorgan's } \\
=0+A^{\prime} B^{\prime} C+B^{\prime} A+B^{\prime} B^{\prime} C & \text { Complemention } \\
=A^{\prime} B^{\prime} C+B^{\prime} A+B^{\prime} C & \text { Idempotent Law } \\
=\left(A^{\prime}+1\right) B^{\prime} C+A B^{\prime} & \text { Distribution } \\
=B^{\prime} C+A B^{\prime} & \text { Law of } 1 \text { 1's } \\
=B^{\prime}(A+C) & \text { Distribution Which of these }
\end{aligned}
$$

Circuit Simplification Example (4/4)

- Draw out final circuit. How many gates do we need for each?
$-D=B^{\prime} C+A B^{\prime}=\frac{B^{\prime}(A+C)}{3}$
- Simplified Circuit:

- Reduction from 6 gates to 3!

Karnaugh Maps (Optional)

- Lots of Boolean Algebra laws for simplification
- Difficult to memorize and spot applications
- When do you know if in simplest form?
- Basically, when you can't reduce it any further
- Not a great system when you're still new to boolean algebra
- Karnaugh Maps (K-maps) are an alternate way to simplify Boolean Algebra
- This technique is normally taught in CS150
- We will never ask you to use a K-map to solve a problem, but you may find it faster/easier if you choose to learn how to use it (see Bonus Slides)

Question: What is the MOST
simplified Boolean Algebra expression for the following circuit?

(B) B (A + C)
(G) $B+A C$
(P) $A B+B+C$
(Y) $A+C$

Technology Break

Agenda

- Combinational Logic
- Truth Tables and Logic Gates
- Administrivia
- Boolean Algebra
- Sequential Logic
- State Elements
- Bonus: Karnaugh Maps (Optional)

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
- Combinational Logic (CL)
- Output is a function of the inputs only, not the history of its execution
- e.g. circuits to add A, B (ALUs)
- Sequential Logic (SL)
- Circuits that "remember" or store information
- a.k.a. "State Elements"
- e.g. memory and registers (Registers)

Uses for State Elements

- Place to store values for some amount of time:
- Register files (like in MIPS)
- Memory (caches and main memory)
- Help control flow of information between combinational logic blocks
- State elements are used to hold up the movement of information at the inputs to combinational logic blocks and allow for orderly passage

Accumulator Example

An example of why we would need to control the flow of information.

Want:

$$
\begin{aligned}
& S=0 ; \\
& \text { for } x_{1}, x_{2}, X_{3} \text { over time... }
\end{aligned}
$$

Assume:

$$
S=S+X_{i}
$$

- Each X value is applied in succession, one per cycle
- The sum since time 1 (cycle) is present on S

First Try: Does this work?

No!

1) How to control the next iteration of the 'for' loop?
2) How do we say: ‘S=0’?

Second Try: How About

 x_{i} This?

A Register is the state element that is used here to hold up the transfer of data to the adder

Delay through Register and Adder
Rough timing

Time

Register Internals

- n instances of a "Flip-Flop"
- Output flips and flops between 0 and 1
- Specifically this is a "D-type Flip-Flop"
- D is "data input", Q is "data output"
- In reality, has 2 outputs (Q and $\overline{\mathrm{Q}}$), but we only care about 1
- http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Flip-Flop Timing Behavior (1/2)

- Edge-triggered D-type flip-flop
- This one is "positive edge-triggered"
- "On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled value is retained."
- Example waveforms:

Flip-Flop Timing Terminology (1/2)

- Camera Analogy: Taking a photo
- Setup time: don't move since about to take picture (open camera shutter)
- Hold time: need to hold still after shutter opens until camera shutter closes
- Time to data: time from open shutter until image appears on the output (viewfinder)

Flip-Flop Timing Terminology (2/2)

- Now applied to hardware:
- Setup Time: how long the input must be stable before the CLK trigger for proper input read
- Hold Time: how long the input must be stable after the CLK trigger for proper input read
- "CLK-to-Q" Delay: how long it takes the output to change, measured from the CLK trigger

Flip-Flop Timing Behavior (2/2)

- Edge-triggered d-type flip-flop
- This one is "positive edge-triggered"
- "On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled

Accumulator Revisited
 Proper Timing (2/2)

- reset signal shown
- Also, in practice Xi might not arrive to the adder at the same time as $\mathrm{Si}-1$
- Si temporarily is wrong, but register always captures correct value
- In good circuits, instability never happens around rising edge of CLK

Summary

- Hardware systems are constructed from Stateless Combinational Logic and Stateful "Memory" Logic (registers)
- Voltages are analog, but quantized to represent logical 0's and 1's
- Combinational Logic: equivalent circuit diagrams, truth tables, and Boolean expressions
- Boolean Algebra allows minimization of gates
- State registers implemented from Flip-flops

Special Bonus Slides: You are NOT responsible for the material contained on the following slides!!! You may, however, find it useful to read anyway.

Agenda

- Combinational Logic
- Truth Tables and Logic Gates
- Administrivia
- Boolean Algebra
- Sequential Logic
- State Elements
- Bonus: Karnaugh Maps (Optional)

Karnaugh Maps (Optional)

- Again, this is completely OPTIONAL material
- Recommended you use .pptx to view animations
- Karnaugh Maps (K-maps) are an alternate way to simplify Boolean Algebra
- This technique is normally taught in CS150
- We will never ask you to use a K-map to solve a problem, but you may find it faster/easier if you choose to learn how to use it
- For more info, see: http://en.wikipedia.org/wiki/Karnaugh_map

Underlying Idea

- Using Sum of Products, "neighboring" input combinations simplify
- "Neighboring": inputs that differ by a single signal
- e.g. $a b+a^{\prime} b=b, a \prime b c+a^{\prime} b c^{\prime}=a^{\prime} b$, etc.
- Recall: Each product only appears where there is a 1 in the output column
- Idea: Let's write out our Truth Table such that the neighbors become apparent!
- Need a Karnaugh map for EACH output

Reorganizing the Truth Table

- Split inputs into 2 evenly-sized groups
- One group will have an extra if an odd \# of inputs
- Write out all combinations of one group horizontally and all combinations of the other group vertically
- Group of n inputs $\rightarrow 2 n$ combinations
- Successive combinations change only 1 input

2 Inputs:

K-map: Majority Circuit (1/2)

- Filling in the Karnaugh map:

- Each row of truth table corresponds to ONE cell of Karnaugh map
- Recommended you view the animation on this slide on the Powerpoint (pptx)
- Note the funny jump when you go from input 011 to 100 (most mistakes made here)

K-map: Majority Circuit (2/2)

- Group neighboring 1's so all are accounted for:
- Each group of neighbors becomes a product term in output
- $y=b c+a b+a c$
- Larger groups become smaller terms - The single 1 in top row --> abc'
- Vertical group of two 1's --> ab

Single cell can be part of many groups

- If entire lower row was 1's --> c

General K-map Rules

- Only group in powers of 2
- Grouping should be of size $2 \mathrm{i} \times 2 \mathrm{j}$
- Applies for both directions
- Wraps around in all directions
- "Corners" case is extreme example
- Always choose largest groupings possible
- Avoid single cells whenever possible
- $y=b d+b^{\prime} d^{\prime}+a c d$

1) NOT a valid group
2) IS a valid group
3) IS a valid group
4) "Corners" case
5) 1 of 2 good choices here
(spot the other?)
