
Instructor:  Alan Christopher
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CS 61C: Great Ideas in 
Computer Architecture

Functional Units,
Finite State Machines



Review of Last Lecture

• Synchronous Digital Systems
– Pulse of a Clock controls flow of information
– All signals are seen as either 0 or 1

• Hardware systems are constructed from Stateless 
Combinational Logic and Stateful “Memory” Logic 
(registers)

• Combinational Logic:  equivalent circuit diagrams, 
truth tables, and Boolean expressions

– Boolean Algebra allows minimization of gates

• State registers implemented from Flip-flops
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Dealing with Waveform 
Diagrams

• Easiest to start with CLK on top
– Solve signal by signal, from inputs to 

outputs
– Can only draw the waveform for a signal if 

all of its input waveforms are drawn

• When does a signal update?
– A state element updates based on CLK 

triggers
– A combinational element updates ANY 

time ANY of its inputs changes
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Example:  T = 10 ns.  tsetup = thold = 0.  tclk-to-q = 1 ns.  
tprop = 1 ns for all gates.  Each “tick” below is 1 ns.
Solve for the waveform of the output Y.
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Hardware Design Hierarchy

7/24/2014 Summer 2014 -- Lecture #19 5

Today



Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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Model for Synchronous Systems
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• Collection of Combinational Logic blocks separated by 
registers
●  Feedback is optional depending on application

• Clock (CLK):  square wave that synchronizes the system
●  Clock signal connects only to clock input of registers

• Register:  several bits of state that samples input on 
rising edge of CLK



Accumulator Revisited
...Again
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• reset signal shown

• In practice X might not arrive to the 
adder at the same time as Si-1

• Si temporarily is wrong, but register 
always captures correct value

• In good circuits, instability never 
happens around rising edge of clk



Register Timing Terms (Review)

• Setup Time:  how long the input must 
be stable before the CLK trigger for 
proper input read

• Hold Time:  how long the input must 
be stable after the CLK trigger for 
proper input read

• “CLK-to-Q” Delay:  how long it takes 
the output to change, measured from 
the CLK trigger
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Where Does Timing Come From?

• Example D flip-flop implementation:

• Changing the D signal around the time E 
(CLK) changes can cause unexpected 
behavior
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Maximum Clock Frequency

• What is the max frequency of this circuit?
– Limited by how much time needed to get 

correct Next State to Register
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Max Delay =

Max Freq = 1/Max Delay

Setup Time 
+ CLK-to-Q Delay
+ CL Delay



+R
e
g

R
e
g

The Critical Path

• The critical path is the longest delay 
between any two registers in a circuit

• The clock period must be longer than 
this critical path, or the signal will not 
propagate properly to that next 
register
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1
2

3

4

Critical Path =
CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay



Pipelining and Clock Frequency (1/2)

• Clock period limited by propagation delay 
of adder and shifter

– Add an extra register to reduce the critical 
path!
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Timing:
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Pipelining and Clock Frequency (2/2)

• Extra register allows higher clock freq (more outputs per 
sec)

• However, takes two (shorter) clock cycles to produce first 
output (higher latency for initial output)

+ setup time + CLK-to-Q delay

+ CLK-to-Q delay

+ Adder delay

+ Shifter delay

+ setup time + CLK-to-Q delay



Pipelining Basics

• By adding more registers, break path into shorter 
“stages”

– Aim is to reduce critical path
– Signals take an additional clock cycle to propagate 

through each stage

• New critical path must be calculated
– Affected by placement of new pipelining registers
– Faster clock rate  =>  higher throughput (outputs)
– More stages  =>  higher startup latency

• Pipelining tends to improve performance
– More on this (application to CPUs) next week
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Question:  Want to run on 1 GHz processor.
tadd = 100 ps.  tmult = 200 ps.  tsetup = thold = 50 ps.  
What is the maximum tclk-to-q we can use?

550 ps(A)

750 ps(B)

500 ps(C)

700 ps(D)



Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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• HW5 will be posted today, due next 
Thursday

• Proj2-2 will be posted 
Friday/Saturday, due the following 
Sunday
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Administrivia



Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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Logisim

• Open-source (i.e. free!) “graphical tool for 
designing and simulating logic circuits”

– Runs on Java on any computer
– Download to your home computer via class login or 

the Logisim website (we are using version 2.7.1)

• No programming involved
– Unlike Verilog, which is a hardware description 

language (HDL)
– Click and drag; still has its share of annoying quirks

• http://ozark.hendrix.edu/~burch/logisim/
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http://ozark.hendrix.edu/~burch/logisim/


Gates in Logisim

• Click gate type, click to 
place

– Can set options before 
placing or select gate later 
to change
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Options

Types 
of 

Gates

bus width n

# inputs

labeling not necessary,
but can help



Registers in Logisim

• Flip-flops and Registers in “Memory” folder
• 8-bit accumulator:
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Wires in Logisim

• Click and drag on existing port or wire
• Color schemes:

– Gray:  unconnected
– Dark Green:  low signal (0)
– Light Green:  high signal (1)
– Red:  error
– Blue:  undetermined signal
– Orange:  incompatible widths

• Tunnels:  all tunnels with same label are 
connected

7/24/2014 Summer 2014 -- Lecture #19 23

“Splitter” used to adjust bus widths



• Connecting wires together
– Crossing wires vs. connected wires

• Losing track of which input is which
– Mis-wiring a block (e.g. CLK to Enable)
– Grabbing wrong wires off of splitter

• Errors:
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Common Mistakes in Logisim



Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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Finite State Machines (FSMs)

• You may have seen FSMs in other classes
• Function can be represented with a state 

transition diagram
• With combinational logic and registers, 

any FSM can be implemented 
in hardware!
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. . .



• An FSM (in this class) is defined by:
– A set of states S  (circles)
– An initial state s0   (only arrow not between states)
– A transition function that maps from the current 

input and current state to the output and the next 
state              (arrows between states)

• State transitions are controlled by the clock: 
– On each clock cycle the machine checks the inputs 

and generates a new state (could be same) and 
new output
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FSM Overview
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•  FSM to detect 3 consecutive 1’s in the Input

Example: 3 Ones FSM

States:  S0, S1, S2
Initial State:  S0
Transitions of 
form:

input/output



Hardware Implementation of FSM

• Register holds a representation of the FSM’s state
– Must assign a unique bit pattern for each state
– Output is present/current state (PS/CS)
– Input is next state (NS)

• Combinational Logic implements transition 
function (state transitions + output)
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+ =



FSM: Combinational Logic

• Read off transitions into Truth Table!
– Inputs:  Current State (CS) and Input (In)
– Outputs:  Next State (NS) and Output (Out)

• Implement logic for EACH output (2 for NS, 1 for Out)
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CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1



Unspecified Output Values (1/2)

• Our FSM has only 3 states
– 2 entries in truth table are 

undefined/unspecified

• Use symbol ‘X’ to mean it can
be either a 0 or 1

– Make choice to simplify final
expression
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CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X



Unspecified Output Values (2/2)

• Let’s find expression for NS1

– Recall:  2-bit output is just a
2-bit bus, which is just 2 wires

• Boolean algebra:
– NS1 = CS1’CS0In + CS1CS0In’

       + CS1CS0In
– NS1 = CS0In
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CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X



3 Ones FSM in Hardware
– 2-bit Register needed for state
– CL:  NS1 = CS0In,  NS0 = CS1’CS0’In,  Out = CS1In
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Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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Data Multiplexor

• Multiplexor (“MUX”) is a selector
– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX
– Input S selects between two inputs of n bits each
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This input is 
passed to 
output if 
selector bits 
match shown 
value



Implementing a 1-bit 2-to-1 MUX 

• Schematic:

• Truth Table:
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s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Boolean Expression:

Circuit Diagram:



1-bit 4-to-1 MUX (1/2)

• Schematic:

• Truth Table:  How many rows?
• Boolean Expression:  

e = s1’s0’a + s1’s0b + s1s0’c + s1s0d
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26=64



1-bit 4-to-1 MUX (2/2)

• Can we leverage what we’ve previously built?
– Alternative hierarchical approach:
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Subcircuits Example
• Logisim equivalent of procedure or method

– Every project is a hierarchy of subcircuits
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Wiring 
Incomplete for 

legibility



Technology Break
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Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter
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• Most processors contain a special logic block 
called the “Arithmetic and Logic Unit” (ALU)

– We’ll show you an easy one that does ADD, SUB, 
bitwise AND, and bitwise OR

• Schematic:
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Arithmetic and Logic Unit 
(ALU)

when S=00, R = A + B
when S=01, R = A – B
when S=10, R = A AND B
when S=11, R = A OR B



Simple ALU Schematic
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Notice that 3 values 
are ALWAYS 
calculated in parallel, 
but only 1 makes it to 
the Result



Adder/Subtractor: 1-bit LSB Adder
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Carry-out bit



Adder/Subtractor: 1-bit Adder 
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Here defining XOR of many inputs 
to be 1 when an odd number of 
inputs are 1

Possible 
carry-in c1



Adder/Subtractor: 1-bit Adder
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•  Circuit Diagrams:



N x 1-bit Adders -> N-bit Adder
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+ + +

b0

•  Connect CarryOuti-1 to CarryIni to chain adders:



Two’s Complement Adder/Subtractor
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+ + +

•  Subtraction accomplished by adding negated number:

x ^ 1 = x’
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

Where did this come from?



Detecting Overflow
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• Unsigned overflow 
● On addition, if carry-out from MSB is 1
● On subtraction, if carry-out from MSB is 0

● This case is a lot harder to see than you might think

• Signed overflow
● Overflow from adding “large” positive 

numbers
● Overflow from adding “large” negative 

numbers



Signed Overflow Examples (4-bit)
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• Overflow from two positive numbers:
● 0111 + 0111, 0111 + 0001, 0100 + 0100.
● Carry-out from the 2nd MSB (but not MSB)

● pos + pos ≠ neg

• Overflow from two negative numbers:
● 1000 + 1000, 1000 + 1111, 1011 + 1011.
● Carry-out from the MSB (but not 2nd MSB)

● neg + neg ≠ pos

• Expression for signed overflow: Cn XOR Cn-1



• Critical path constrains clock rate
– Timing constants:  setup, hold, and clk-to-q times
– Can adjust with extra registers (pipelining)

• Finite State Machines extremely useful
– Can implement systems with Register + CL

• Use MUXes to select among input
– S input bits selects one of 2S inputs
– Each input is a bus n-bits wide

• Build n-bit adder out of chained 1-bit adders
– Can also do subtraction with additional SUB signal
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Summary
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