
Instructor: Alan Christopher

7/24/2014 Summer 2014 -- Lecture #19 1

CS 61C: Great Ideas in
Computer Architecture

Functional Units,
Finite State Machines

Review of Last Lecture

• Synchronous Digital Systems
– Pulse of a Clock controls flow of information
– All signals are seen as either 0 or 1

• Hardware systems are constructed from Stateless
Combinational Logic and Stateful “Memory” Logic
(registers)

• Combinational Logic: equivalent circuit diagrams,
truth tables, and Boolean expressions

– Boolean Algebra allows minimization of gates

• State registers implemented from Flip-flops

7/24/2014 Summer 2014 -- Lecture #19 2

Dealing with Waveform
Diagrams

• Easiest to start with CLK on top
– Solve signal by signal, from inputs to

outputs
– Can only draw the waveform for a signal if

all of its input waveforms are drawn

• When does a signal update?
– A state element updates based on CLK

triggers
– A combinational element updates ANY

time ANY of its inputs changes

7/24/2014 Summer 2014 -- Lecture #19 3

4

Example: T = 10 ns. tsetup = thold = 0. tclk-to-q = 1 ns.
tprop = 1 ns for all gates. Each “tick” below is 1 ns.
Solve for the waveform of the output Y.

system

datapath control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

Hardware Design Hierarchy

7/24/2014 Summer 2014 -- Lecture #19 5

Today

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 6

Model for Synchronous Systems

7/24/2014 Summer 2014 -- Lecture #19 7

• Collection of Combinational Logic blocks separated by
registers
● Feedback is optional depending on application

• Clock (CLK): square wave that synchronizes the system
● Clock signal connects only to clock input of registers

• Register: several bits of state that samples input on
rising edge of CLK

Accumulator Revisited
...Again

7/24/2014 Summer 2014 -- Lecture #19 8

• reset signal shown

• In practice X might not arrive to the
adder at the same time as Si-1

• Si temporarily is wrong, but register
always captures correct value

• In good circuits, instability never
happens around rising edge of clk

Register Timing Terms (Review)

• Setup Time: how long the input must
be stable before the CLK trigger for
proper input read

• Hold Time: how long the input must
be stable after the CLK trigger for
proper input read

• “CLK-to-Q” Delay: how long it takes
the output to change, measured from
the CLK trigger

7/24/2014 Summer 2014 -- Lecture #19 9

Where Does Timing Come From?

• Example D flip-flop implementation:

• Changing the D signal around the time E
(CLK) changes can cause unexpected
behavior

7/24/2014 Summer 2014 -- Lecture #19 10

Maximum Clock Frequency

• What is the max frequency of this circuit?
– Limited by how much time needed to get

correct Next State to Register

7/24/2014 Summer 2014 -- Lecture #19 11

Max Delay =

Max Freq = 1/Max Delay

Setup Time
+ CLK-to-Q Delay
+ CL Delay

+R
e
g

R
e
g

The Critical Path

• The critical path is the longest delay
between any two registers in a circuit

• The clock period must be longer than
this critical path, or the signal will not
propagate properly to that next
register

7/24/2014 Summer 2014 -- Lecture #19 12

1
2

3

4

Critical Path =
CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay

Pipelining and Clock Frequency (1/2)

• Clock period limited by propagation delay
of adder and shifter

– Add an extra register to reduce the critical
path!

7/24/2014 Summer 2014 -- Lecture #19 13

Timing:

7/24/2014 Summer 2014 -- Lecture #19 14

Pipelining and Clock Frequency (2/2)

• Extra register allows higher clock freq (more outputs per
sec)

• However, takes two (shorter) clock cycles to produce first
output (higher latency for initial output)

+ setup time + CLK-to-Q delay

+ CLK-to-Q delay

+ Adder delay

+ Shifter delay

+ setup time + CLK-to-Q delay

Pipelining Basics

• By adding more registers, break path into shorter
“stages”

– Aim is to reduce critical path
– Signals take an additional clock cycle to propagate

through each stage

• New critical path must be calculated
– Affected by placement of new pipelining registers
– Faster clock rate => higher throughput (outputs)
– More stages => higher startup latency

• Pipelining tends to improve performance
– More on this (application to CPUs) next week

7/24/2014 Summer 2014 -- Lecture #19 15

16

Question: Want to run on 1 GHz processor.
tadd = 100 ps. tmult = 200 ps. tsetup = thold = 50 ps.
What is the maximum tclk-to-q we can use?

550 ps(A)

750 ps(B)

500 ps(C)

700 ps(D)

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 17

• HW5 will be posted today, due next
Thursday

• Proj2-2 will be posted
Friday/Saturday, due the following
Sunday

7/24/2014 Summer 2014 -- Lecture #19 18

Administrivia

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 19

Logisim

• Open-source (i.e. free!) “graphical tool for
designing and simulating logic circuits”

– Runs on Java on any computer
– Download to your home computer via class login or

the Logisim website (we are using version 2.7.1)

• No programming involved
– Unlike Verilog, which is a hardware description

language (HDL)
– Click and drag; still has its share of annoying quirks

• http://ozark.hendrix.edu/~burch/logisim/

7/24/2014 Summer 2014 -- Lecture #19 20

http://ozark.hendrix.edu/~burch/logisim/

Gates in Logisim

• Click gate type, click to
place

– Can set options before
placing or select gate later
to change

7/24/2014 Summer 2014 -- Lecture #19 21

Options

Types
of

Gates

bus width n

inputs

labeling not necessary,
but can help

Registers in Logisim

• Flip-flops and Registers in “Memory” folder
• 8-bit accumulator:

7/24/2014 Summer 2014 -- Lecture #19 22

Wires in Logisim

• Click and drag on existing port or wire
• Color schemes:

– Gray: unconnected
– Dark Green: low signal (0)
– Light Green: high signal (1)
– Red: error
– Blue: undetermined signal
– Orange: incompatible widths

• Tunnels: all tunnels with same label are
connected

7/24/2014 Summer 2014 -- Lecture #19 23

“Splitter” used to adjust bus widths

• Connecting wires together
– Crossing wires vs. connected wires

• Losing track of which input is which
– Mis-wiring a block (e.g. CLK to Enable)
– Grabbing wrong wires off of splitter

• Errors:

7/24/2014 Summer 2014 -- Lecture #19 24

Common Mistakes in Logisim

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 25

Finite State Machines (FSMs)

• You may have seen FSMs in other classes
• Function can be represented with a state

transition diagram
• With combinational logic and registers,

any FSM can be implemented
in hardware!

7/24/2014 Summer 2014 -- Lecture #19 26

. . .

• An FSM (in this class) is defined by:
– A set of states S (circles)
– An initial state s0 (only arrow not between states)
– A transition function that maps from the current

input and current state to the output and the next
state (arrows between states)

• State transitions are controlled by the clock:
– On each clock cycle the machine checks the inputs

and generates a new state (could be same) and
new output

7/24/2014 Summer 2014 -- Lecture #19 27

FSM Overview

7/24/2014 Summer 2014 -- Lecture #19 28

• FSM to detect 3 consecutive 1’s in the Input

Example: 3 Ones FSM

States: S0, S1, S2
Initial State: S0
Transitions of
form:

input/output

Hardware Implementation of FSM

• Register holds a representation of the FSM’s state
– Must assign a unique bit pattern for each state
– Output is present/current state (PS/CS)
– Input is next state (NS)

• Combinational Logic implements transition
function (state transitions + output)

7/24/2014 Summer 2014 -- Lecture #19 29

+ =

FSM: Combinational Logic

• Read off transitions into Truth Table!
– Inputs: Current State (CS) and Input (In)
– Outputs: Next State (NS) and Output (Out)

• Implement logic for EACH output (2 for NS, 1 for Out)
7/24/2014 Summer 2014 -- Lecture #19 30

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1

Unspecified Output Values (1/2)

• Our FSM has only 3 states
– 2 entries in truth table are

undefined/unspecified

• Use symbol ‘X’ to mean it can
be either a 0 or 1

– Make choice to simplify final
expression

7/24/2014 Summer 2014 -- Lecture #19 31

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

Unspecified Output Values (2/2)

• Let’s find expression for NS1

– Recall: 2-bit output is just a
2-bit bus, which is just 2 wires

• Boolean algebra:
– NS1 = CS1’CS0In + CS1CS0In’

 + CS1CS0In
– NS1 = CS0In

7/24/2014 Summer 2014 -- Lecture #19 32

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

3 Ones FSM in Hardware
– 2-bit Register needed for state
– CL: NS1 = CS0In, NS0 = CS1’CS0’In, Out = CS1In

7/24/2014 Summer 2014 -- Lecture #19 33

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 34

Data Multiplexor

• Multiplexor (“MUX”) is a selector
– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX
– Input S selects between two inputs of n bits each

7/24/2014 Summer 2014 -- Lecture #19 35

This input is
passed to
output if
selector bits
match shown
value

Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

7/24/2014 Summer 2014 -- Lecture #19 36

s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Boolean Expression:

Circuit Diagram:

1-bit 4-to-1 MUX (1/2)

• Schematic:

• Truth Table: How many rows?
• Boolean Expression:

e = s1’s0’a + s1’s0b + s1s0’c + s1s0d

7/24/2014 Summer 2014 -- Lecture #19 37

26=64

1-bit 4-to-1 MUX (2/2)

• Can we leverage what we’ve previously built?
– Alternative hierarchical approach:

7/24/2014 Summer 2014 -- Lecture #19 38

Subcircuits Example
• Logisim equivalent of procedure or method

– Every project is a hierarchy of subcircuits

7/24/2014 Summer 214 -- Lecture #19 39

Wiring
Incomplete for

legibility

Technology Break

7/25/2013 Summer 2014 -- Lecture #19 40

Agenda

• State Elements Continued
• Administrivia
• Logisim Introduction
• Finite State Machines
• Multiplexers
• ALU Design

– Adder/Subtracter

7/24/2014 Summer 2014 -- Lecture #19 41

• Most processors contain a special logic block
called the “Arithmetic and Logic Unit” (ALU)

– We’ll show you an easy one that does ADD, SUB,
bitwise AND, and bitwise OR

• Schematic:

7/24/2014 Summer 2014 -- Lecture #19 42

Arithmetic and Logic Unit
(ALU)

when S=00, R = A + B
when S=01, R = A – B
when S=10, R = A AND B
when S=11, R = A OR B

Simple ALU Schematic

7/24/2014 Summer 2014 -- Lecture #19 43

Notice that 3 values
are ALWAYS
calculated in parallel,
but only 1 makes it to
the Result

Adder/Subtractor: 1-bit LSB Adder

7/24/2014 Summer 2014 -- Lecture #19 44

Carry-out bit

Adder/Subtractor: 1-bit Adder

7/24/2014 Summer 2014 -- Lecture #19 45

Here defining XOR of many inputs
to be 1 when an odd number of
inputs are 1

Possible
carry-in c1

Adder/Subtractor: 1-bit Adder

7/24/2014 Summer 2014 -- Lecture #19 46

• Circuit Diagrams:

N x 1-bit Adders -> N-bit Adder

7/24/2014 Summer 2014 -- Lecture #19 47

+ + +

b0

• Connect CarryOuti-1 to CarryIni to chain adders:

Two’s Complement Adder/Subtractor

7/24/2014 Summer 2014 -- Lecture #19 48

+ + +

• Subtraction accomplished by adding negated number:

x ^ 1 = x’
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

Where did this come from?

Detecting Overflow

7/24/2014 Summer 2014 -- Lecture #19 49

• Unsigned overflow
● On addition, if carry-out from MSB is 1
● On subtraction, if carry-out from MSB is 0

● This case is a lot harder to see than you might think

• Signed overflow
● Overflow from adding “large” positive

numbers
● Overflow from adding “large” negative

numbers

Signed Overflow Examples (4-bit)

7/24/2014 Summer 2014 -- Lecture #19 50

• Overflow from two positive numbers:
● 0111 + 0111, 0111 + 0001, 0100 + 0100.
● Carry-out from the 2nd MSB (but not MSB)

● pos + pos ≠ neg

• Overflow from two negative numbers:
● 1000 + 1000, 1000 + 1111, 1011 + 1011.
● Carry-out from the MSB (but not 2nd MSB)

● neg + neg ≠ pos

• Expression for signed overflow: Cn XOR Cn-1

• Critical path constrains clock rate
– Timing constants: setup, hold, and clk-to-q times
– Can adjust with extra registers (pipelining)

• Finite State Machines extremely useful
– Can implement systems with Register + CL

• Use MUXes to select among input
– S input bits selects one of 2S inputs
– Each input is a bus n-bits wide

• Build n-bit adder out of chained 1-bit adders
– Can also do subtraction with additional SUB signal

7/24/2014 Summer 2014 -- Lecture #19 51

Summary

	Slide 1
	Review of Last Lecture
	Dealing with Waveform Diagrams
	Slide 4
	Hardware Design Hierarchy
	Agenda
	Model for Synchronous Systems
	Accumulator Revisited ...Again
	Register Timing Terms (Review)
	Where Does Timing Come From?
	Maximum Clock Frequency
	The Critical Path
	Pipelining and Clock Frequency (1/2)
	Pipelining and Clock Frequency (2/2)
	Pipelining Basics
	Slide 16
	Agenda
	Administrivia
	Agenda
	Logisim
	Gates in Logisim
	Registers in Logisim
	Wires in Logisim
	Common Mistakes in Logisim
	Agenda
	Finite State Machines (FSMs)
	FSM Overview
	Example: 3 Ones FSM
	Hardware Implementation of FSM
	FSM: Combinational Logic
	Unspecified Output Values (1/2)
	Unspecified Output Values (2/2)
	3 Ones FSM in Hardware
	Agenda
	Data Multiplexor
	Implementing a 1-bit 2-to-1 MUX
	1-bit 4-to-1 MUX (1/2)
	1-bit 4-to-1 MUX (2/2)
	Subcircuits Example
	Get To Know Your Instructor
	Agenda
	Arithmetic and Logic Unit (ALU)
	Simple ALU Schematic
	Adder/Subtractor: 1-bit LSB Adder
	Adder/Subtractor: 1-bit Adder
	Adder/Subtractor: 1-bit Adder
	N x 1-bit Adders N-bit Adder
	Two’s Complement Adder/Subtractor
	Detecting Overflow
	Signed Overflow Examples (4-bit)
	Summary

