
Instructor: Alan Christopher

CS 61C: Great Ideas in
Computer Architecture

Pipelining Hazards

7/30/2014 Summer 2014 -- Lecture #22 1

Review of Last Lecture

• Implementing controller for your datapath
– Take decoded signals from instruction and

generate control signals
– Use “AND” and “OR” Logic scheme

• Pipelining improves performance by
exploiting Instruction Level Parallelism

– 5-stage pipeline for MIPS: IF, ID, EX, MEM, WB
– Executes multiple instructions in parallel
– Each instruction has the same latency

7/30/2014 Summer 2014 -- Lecture #22 2

Review: Pipelined Datapath

7/30/2014 Summer 2014 -- Lecture #22 3

I
n
s
t
r

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
L

U

Reg

Reg

 I$

 D$

A
L

U

A
L

U

Reg

 D$

Reg

 I$

 D$

Reg

A
L

U

Reg Reg

Reg

 D$

Reg

 D$

A
L

U

• RegFile: right half is read, left half is write

Reg

 I$

Graphical Pipeline Representation

Question: Which of the following
signals (buses or control signals) for
MIPS-lite does NOT need to be passed
into the EX pipeline stage?

ALUsrc(B)

MemWr(G)

RegWr(P)

imm16(Y)

IF ID EX Mem WB
A

L
U I$ Reg D$ Reg

5

Question: Which of the following
signals (buses or control signals) for
MIPS-lite does NOT need to be passed
into the EX pipeline stage?

ALUsrc(B)

MemWr(G)

RegWr(P)

imm16(Y)

IF ID EX Mem WB
A

L
U I$ Reg D$ Reg

6

Pipelining Hazards

A hazard is a situation that prevents starting
the next instruction in the next clock cycle

7/30/2014 Summer 2014 -- Lecture #22 7

Pipelining Hazards

A hazard is a situation that prevents starting
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

7/30/2014 Summer 2014 -- Lecture #22 8

Pipelining Hazards

A hazard is a situation that prevents starting
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to

complete its data write

7/30/2014 Summer 2014 -- Lecture #22 9

Pipelining Hazards

A hazard is a situation that prevents starting
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to

complete its data write
3) Control hazard

– Flow of execution depends on previous
instruction

7/30/2014 Summer 2014 -- Lecture #22 10

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 11

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

1. Structural Hazards

7/30/2014 Summer 2014 -- Lecture #22 12

• Conflict for use of a resource

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

1. Structural Hazards

7/30/2014 Summer 2014 -- Lecture #22 13

• Conflict for use of a resource

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

1. Structural Hazards

Trying to read
same memory
twice in same
clock cycle

7/30/2014 Summer 2014 -- Lecture #22 14

• Conflict for use of a resource

1. Structural Hazards

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 15

• Conflict for use of a resource

1. Structural Hazards

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 16

• Conflict for use of a resource

1. Structural Hazards

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Can we read and
write to registers
simultaneously?

7/30/2014 Summer 2014 -- Lecture #22 17

• Conflict for use of a resource

Structural Hazard #1: Single Memory

• MIPS pipeline with a single memory?
– Load/Store requires memory access for

data
– Instruction fetch would have to stall for

that cycle
● Causes a pipeline “bubble”

7/30/2014 Summer 2014 -- Lecture #22 18

Structural Hazard #1: Single Memory

• MIPS pipeline with a single memory?
– Load/Store requires memory access for

data
– Instruction fetch would have to stall for

that cycle
● Causes a pipeline “bubble”

• Hence, pipelined datapaths require
separate instruction/data memories

– Separate L1 I$ and L1 D$ take care of this

7/30/2014 Summer 2014 -- Lecture #22 19

Structural Hazard #2: Registers

• We use two solutions simultaneously:
– Split RegFile access in two: Write during 1st

half and Read during 2nd half of each clock
cycle

● Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

– Build RegFile with independent read and
write port

● Conclusion: Read and Write to registers
during same clock cycle is okay

7/30/2014 Summer 2014 -- Lecture #22 20

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 21

2. Data Hazards (1/2)

• Consider the following sequence of
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or $t7, $t0, $t8
xor $t9, $t0, $t10

7/30/2014 Summer 2014 -- Lecture #22 22

2. Data Hazards (1/2)

• Consider the following sequence of
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or $t7, $t0, $t8
xor $t9, $t0, $t10

7/30/2014 Summer 2014 -- Lecture #22 23

Stored
during WB

2. Data Hazards (1/2)

• Consider the following sequence of
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or $t7, $t0, $t8
xor $t9, $t0, $t10

7/30/2014 Summer 2014 -- Lecture #22 24

Stored
during WB

Read
during ID

2. Data Hazards (2/2)
• Data-flow backward in time are hazards

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 25

2. Data Hazards (2/2)
• Data-flow backward in time are hazards

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 26

Data Hazard Solution: Forwarding

• Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 27

Data Hazard Solution: Forwarding

• Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 28

Data Hazard Solution: Forwarding

• Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 29

Arithmetic
result
available in EX

Data Hazard Solution: Forwarding

• Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 30

Arithmetic
result
available in EX

Datapath for Forwarding (1/2)

• What changes need to be made here?

7/30/2014 Summer 2014 -- Lecture #22 31

Datapath for Forwarding (2/2)
• Handled by forwarding unit

7/30/2014 Summer 2014 -- Lecture #22 32

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 33

Administrivia

• HW 5 (still) due tomorrow
• Project 2 (still) due Sunday

– Reduced lenience for botched submissions

– Use the provided script to check your
submission after submitting!

– Make sure that only one partner has a
submission on file, with his partner listed!

7/30/2014 Summer 2014 -- Lecture #22 34

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 35

Data Hazard: Loads (1/4)

• Recall: Dataflow backwards in time are
hazards

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 36

Data Hazard: Loads (1/4)

• Recall: Dataflow backwards in time are
hazards

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 37

Data Hazard: Loads (1/4)

• Recall: Dataflow backwards in time are
hazards

• Can’t solve all cases with forwarding
– Must stall instruction dependent on load,

then forward (more hardware)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 38

Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

7/30/2014 Summer 2014 -- Lecture #22 39

Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 40

Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

7/30/2014 Summer 2014 -- Lecture #22 41

Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

How to stall
just part of
pipeline?

7/30/2014 Summer 2014 -- Lecture #22 42

Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

Schematically, this is what we
want, but in reality stalls done
“horizontally”

How to stall
just part of
pipeline?

7/30/2014 Summer 2014 -- Lecture #22 43

Data Hazard: Loads (3/4)

• Stall is equivalent to nop

7/30/2014 Summer 2014 -- Lecture #22 44

Data Hazard: Loads (3/4)

• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

UReg D$

lw $t0, 0($t1) A
L

UI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

nop

7/30/2014 Summer 2014 -- Lecture #22 45

Data Hazard: Loads (3/4)

• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

UReg D$

lw $t0, 0($t1) A
L

UI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

nop

7/30/2014 Summer 2014 -- Lecture #22 46

Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load,

then the hardware interlock will stall it for one
cycle

7/30/2014 Summer 2014 -- Lecture #22 47

Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load,

then the hardware interlock will stall it for one
cycle

– Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code
space)

7/30/2014 Summer 2014 -- Lecture #22 48

Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load,

then the hardware interlock will stall it for one
cycle

– Letting the hardware stall the instruction in
the delay slot is equivalent to putting a nop in
the slot (except the latter uses more code
space)

Idea: Let the compiler put an unrelated
instruction in that slot → no stall!

7/30/2014 Summer 2014 -- Lecture #22 49

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the
next instruction!

• MIPS code for D=A+B; E=A+C;

Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

7/30/2014 Summer 2014 -- Lecture #22 50

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the
next instruction!

• MIPS code for D=A+B; E=A+C;

Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
7/30/2014 Summer 2014 -- Lecture #22 51

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the
next instruction!

• MIPS code for D=A+B; E=A+C;

Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
7/30/2014 Summer 2014 -- Lecture #22 52

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the
next instruction!

• MIPS code for D=A+B; E=A+C;

Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
7/30/2014 Summer 2014 -- Lecture #22 53

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the
next instruction!

• MIPS code for D=A+B; E=A+C;

Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles 11 cycles
7/30/2014 Summer 2014 -- Lecture #22 54

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 55

3. Control Hazards

• Branch (beq, bne) determines flow of
control

– Fetching next instruction depends on
branch outcome

– Pipeline can’t always fetch correct
instruction

7/30/2014 Summer 2014 -- Lecture #22 56

3. Control Hazards

• Branch (beq, bne) determines flow of
control

– Fetching next instruction depends on
branch outcome

– Pipeline can’t always fetch correct
instruction

● Still working on ID stage of branch

7/30/2014 Summer 2014 -- Lecture #22 57

3. Control Hazards

• Branch (beq, bne) determines flow of
control

– Fetching next instruction depends on
branch outcome

– Pipeline can’t always fetch correct
instruction

● Still working on ID stage of branch

• Simple Solution: Stall on every branch
until we have the new PC value

– How long must we stall?

7/30/2014 Summer 2014 -- Lecture #22 58

Branch Stall
• When is comparison result available?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 59

Branch Stall
• When is comparison result available?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

TWO bubbles
required per
branch!

7/30/2014 Summer 2014 -- Lecture #22 60

3. Control Hazard: Branching

• Option #1: Insert special branch
comparator in ID stage

– As soon as instruction is decoded,
immediately make a decision and set the
new value of the PC

7/30/2014 Summer 2014 -- Lecture #22 61

3. Control Hazard: Branching

• Option #1: Insert special branch
comparator in ID stage

– As soon as instruction is decoded,
immediately make a decision and set the
new value of the PC

– Benefit: Branch decision made in 2nd
stage, so only one nop is needed instead of
two

– Side Note: This means that branches are
idle in EX, MEM, and WB

7/30/2014 Summer 2014 -- Lecture #22 62

Improved Branch Stall
• When is comparison result available?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 63

Improved Branch Stall
• When is comparison result available?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Only one
bubble
required
now

7/30/2014 Summer 2014 -- Lecture #22 64

Datapath for ID Branch Comparator

• What changes need to be made here?

7/30/2014 Summer 2014 -- Lecture #22 65

Datapath for ID Branch Comparator

• Handled by hazard detection unit

7/30/2014 Summer 2014 -- Lecture #22 66

3. Control Hazard: Branching

• Option #2: Branch Prediction – guess
outcome of a branch, fix afterwards if
necessary

7/30/2014 Summer 2014 -- Lecture #22 67

3. Control Hazard: Branching

• Option #2: Branch Prediction – guess
outcome of a branch, fix afterwards if
necessary

– Must cancel (flush) all instructions in
pipeline that depended on guess that was
wrong

– How many instructions do we end up
flushing?

7/30/2014 Summer 2014 -- Lecture #22 68

3. Control Hazard: Branching

• Option #2: Branch Prediction – guess
outcome of a branch, fix afterwards if
necessary

– Must cancel (flush) all instructions in
pipeline that depended on guess that was
wrong

– How many instructions do we end up
flushing?

• Achieve simplest hardware if we predict
that all branches are NOT taken

7/30/2014 Summer 2014 -- Lecture #22 69

3. Control Hazard: Branching

• Option #3: Branch delay slot
– Whether or not we take the branch, always

execute the instruction immediately
following the branch

7/30/2014 Summer 2014 -- Lecture #22 70

3. Control Hazard: Branching

• Option #3: Branch delay slot
– Whether or not we take the branch, always

execute the instruction immediately
following the branch

– Worst-Case: Put a nop in the branch-delay
slot

7/30/2014 Summer 2014 -- Lecture #22 71

3. Control Hazard: Branching

• Option #3: Branch delay slot
– Whether or not we take the branch, always

execute the instruction immediately
following the branch

– Worst-Case: Put a nop in the branch-delay
slot

– Better Case: Move an instruction from
before the branch into the branch-delay
slot

● Must not affect the logic of program

7/30/2014 Summer 2014 -- Lecture #22 72

3. Control Hazard: Branching

• MIPS uses this delayed branch
concept

– Re-ordering instructions is a common
way to speed up programs

– Compiler finds an instruction to put in
the branch delay slot ≈ 50% of the time

7/30/2014 Summer 2014 -- Lecture #22 73

3. Control Hazard: Branching

• MIPS uses this delayed branch
concept

– Re-ordering instructions is a common
way to speed up programs

– Compiler finds an instruction to put in
the branch delay slot ≈ 50% of the time

• Jumps also have a delay slot
– Why is one needed?

7/30/2014 Summer 2014 -- Lecture #22 74

Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

75

Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

Exit:
76

Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit:
77

Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:
78

Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:

Why not any of the
other instructions?

79

Delayed Jump in MIPS

• MIPS Green Sheet for jal:
R[31]=PC+8; PC=JumpAddr

7/30/2014 Summer 2014 -- Lecture #22 80

Delayed Jump in MIPS

• MIPS Green Sheet for jal:
R[31]=PC+8; PC=JumpAddr

– PC+8 because of jump delay slot!
– Instruction at PC+4 always gets

executed before jal jumps to
label, so return to PC+8

7/30/2014 Summer 2014 -- Lecture #22 81

Technology Break

→ Summer 2014 -- Lecture #22 82

Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 83

Dynamic Branch Prediction

• Branch penalty is more significant in deeper
pipelines

– Also superscalar pipelines (discussed tomorrow)

7/30/2014 Summer 2014 -- Lecture #22 84

Dynamic Branch Prediction

• Branch penalty is more significant in deeper
pipelines

– Also superscalar pipelines (discussed tomorrow)

• Use dynamic branch prediction
– Have branch prediction buffer (a.k.a. branch

history table) that stores outcomes (taken/not
taken) indexed by recent branch instruction
addresses

7/30/2014 Summer 2014 -- Lecture #22 85

Dynamic Branch Prediction

• Branch penalty is more significant in deeper
pipelines

– Also superscalar pipelines (discussed tomorrow)

• Use dynamic branch prediction
– Have branch prediction buffer (a.k.a. branch

history table) that stores outcomes (taken/not
taken) indexed by recent branch instruction
addresses

– To execute a branch
● Check table and predict the same outcome for next fetch
● If wrong, flush pipeline and flip prediction

7/30/2014 Summer 2014 -- Lecture #22 86

1-Bit Predictor: Shortcoming
• Examine the code below, assuming both loops will be

executed multiple times:

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

7/30/2014 Summer 2014 -- Lecture #22 87

1-Bit Predictor: Shortcoming
• Examine the code below, assuming both loops will be

executed multiple times:

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

• Inner loop branches are predicted wrong twice!
● Predict as taken on last iteration of inner loop
● Then predict as not taken on first iteration of inner loop next

time around

7/30/2014 Summer 2014 -- Lecture #22 88

2-Bit Predictor
• Only change prediction after two successive

incorrect predictions

7/30/2014 Summer 2014 -- Lecture #22 89

Question: For each code sequences
below, choose one of the statements
below:

 (B) No stalls as is

(G) No stalls with forwarding

(P) Must stall

1:
 lw $t0,0($t0)
 add $t1,$t0,$t0

2:
 add $t1,$t0,$t0
 addi $t2,$t0,5
 addi $t4,$t1,5

3:
 addi $t1,$t0,1
 addi $t2,$t0,2
 addi $t3,$t0,2
 addi $t3,$t0,4
 addi $t5,$t1,5

90

Code Sequence 1

 I$

lw

add

instr

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 91

Code Sequence 1

 I$

lw

add

instr

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 92

Code Sequence 1

 I$

lw

add

instr

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Must
stall

7/30/2014 Summer 2014 -- Lecture #22 93

Code Sequence 2

 I$

add

addi

addi

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 94

Code Sequence 2

 I$

add

addi

addi

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

no forwarding

7/30/2014 Summer 2014 -- Lecture #22 95

Code Sequence 2

 I$

add

addi

addi

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
forwarding

no forwarding

7/30/2014 Summer 2014 -- Lecture #22 96

Code Sequence 2

 I$

add

addi

addi

instr

instr
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
forwarding

no forwarding

No stalls
with
forwarding

7/30/2014 Summer 2014 -- Lecture #22 97

Code Sequence 3

 I$

addi

addi

addi

addi

addi
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 98

Code Sequence 3

 I$

addi

addi

addi

addi

addi
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

7/30/2014 Summer 2014 -- Lecture #22 99

Code Sequence 3

 I$

addi

addi

addi

addi

addi
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

U I$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

No stalls as
is

7/30/2014 Summer 2014 -- Lecture #22 100

Summary

• Hazards reduce effectiveness of pipelining
– Cause stalls/bubbles

• Structural Hazards
– Conflict in use of datapath component

• Data Hazards
– Need to wait for result of a previous instruction

• Control Hazards
– Address of next instruction uncertain/unknown
– Branch and jump delay slots

7/30/2014 Summer 2014 -- Lecture #22 101

	Slide 1
	Review of Last Lecture
	Review: Pipelined Datapath
	Graphical Pipeline Representation
	Slide 6
	Pipelining Hazards
	Slide 8
	Slide 9
	Slide 10
	Agenda
	1. Structural Hazards
	1. Structural Hazards
	Structural Hazard #1: Single Memory
	Slide 19
	Structural Hazard #2: Registers
	Agenda
	2. Data Hazards (1/2)
	Slide 23
	Slide 24
	2. Data Hazards (2/2)
	Slide 26
	Data Hazard Solution: Forwarding
	Slide 28
	Slide 29
	Slide 30
	Datapath for Forwarding (1/2)
	Datapath for Forwarding (2/2)
	Agenda
	Administrivia
	Agenda
	Data Hazard: Loads (1/4)
	Slide 37
	Slide 38
	Data Hazard: Loads (2/4)
	Data Hazard: Loads (3/4)
	Data Hazard: Loads (4/4)
	Slide 48
	Slide 49
	Code Scheduling to Avoid Stalls
	Agenda
	Slide 56
	Slide 57
	Slide 58
	Branch Stall
	3. Control Hazard: Branching
	Slide 62
	Improved Branch Stall
	Datapath for ID Branch Comparator
	Datapath for ID Branch Comparator
	3. Control Hazard: Branching
	Slide 68
	Slide 69
	3. Control Hazard: Branching
	Slide 71
	Slide 72
	3. Control Hazard: Branching
	Slide 74
	Delayed Branch Example
	Delayed Jump in MIPS
	Get To Know Your Staff
	Agenda
	Dynamic Branch Prediction
	Slide 85
	Slide 86
	1-Bit Predictor: Shortcoming
	2-Bit Predictor
	Slide 90
	Code Sequence 1
	Slide 92
	Code Sequence 2
	Code Sequence 3
	Slide 99
	Summary

