
Instructor:  Alan Christopher

CS 61C: Great Ideas in 
Computer Architecture

Pipelining Hazards
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Review of Last Lecture

• Implementing controller for your datapath
– Take decoded signals from instruction and 

generate control signals
– Use “AND” and “OR” Logic scheme

• Pipelining improves performance by 
exploiting Instruction Level Parallelism

– 5-stage pipeline for MIPS:  IF, ID, EX, MEM, WB
– Executes multiple instructions in parallel
– Each instruction has the same latency
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Review: Pipelined Datapath
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Question:  Which of the following 
signals (buses or control signals) for 
MIPS-lite does NOT need to be passed 
into the EX pipeline stage?

ALUsrc(B)

MemWr(G)

RegWr(P)

imm16(Y)

IF ID EX Mem WB
A

L
U  I$ Reg   D$ Reg
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Question:  Which of the following 
signals (buses or control signals) for 
MIPS-lite does NOT need to be passed 
into the EX pipeline stage?

ALUsrc(B)

MemWr(G)

RegWr(P)

imm16(Y)
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L
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Pipelining Hazards

A hazard is a situation that prevents starting 
the next instruction in the next clock cycle
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Pipelining Hazards

A hazard is a situation that prevents starting 
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)
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Pipelining Hazards

A hazard is a situation that prevents starting 
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to 

complete its data write
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Pipelining Hazards

A hazard is a situation that prevents starting 
the next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to 

complete its data write
3) Control hazard

– Flow of execution depends on previous 
instruction
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction
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1. Structural Hazards
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1. Structural Hazards

Trying to read 
same memory 
twice in same 
clock cycle
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1. Structural Hazards
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1. Structural Hazards

  I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg
A

L
U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Can we read and 
write to registers 
simultaneously?
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Structural Hazard #1: Single Memory

• MIPS pipeline with a single memory?
– Load/Store requires memory access for 

data
– Instruction fetch would have to stall for 

that cycle
● Causes a pipeline “bubble”
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Structural Hazard #1: Single Memory

• MIPS pipeline with a single memory?
– Load/Store requires memory access for 

data
– Instruction fetch would have to stall for 

that cycle
● Causes a pipeline “bubble”

• Hence, pipelined datapaths require 
separate instruction/data memories

– Separate L1 I$ and L1 D$ take care of this
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Structural Hazard #2: Registers

• We use two solutions simultaneously:
– Split RegFile access in two:  Write during 1st 

half and Read during 2nd half of each clock 
cycle

● Possible because RegFile access is VERY fast 
(takes less than half the time of ALU stage)

– Build RegFile with independent read and 
write port

● Conclusion: Read and Write to registers 
during same clock cycle is okay
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction
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2. Data Hazards (1/2)

• Consider the following sequence of 
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or  $t7, $t0, $t8
xor $t9, $t0, $t10
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2. Data Hazards (1/2)

• Consider the following sequence of 
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2. Data Hazards (1/2)

• Consider the following sequence of 
instructions:

add $t0, $t1, $t2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or  $t7, $t0, $t8
xor $t9, $t0, $t10
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2. Data Hazards (2/2)
• Data-flow backward in time are hazards

sub $t4,$t0,$t3
A

L
UI$ Reg  D$ Reg

and $t5,$t0,$t6
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or   $t7,$t0,$t8 I$
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add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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2. Data Hazards (2/2)
• Data-flow backward in time are hazards
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Data Hazard Solution: Forwarding

•  Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg  D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
L

UReg  D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Data Hazard Solution: Forwarding
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Data Hazard Solution: Forwarding
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Data Hazard Solution: Forwarding

•  Forward result as soon as it is available
– OK that it’s not stored in RegFile yet

sub $t4,$t0,$t3
A

L
UI$ Reg  D$ Reg

and $t5,$t0,$t6

A
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UI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$
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IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Datapath for Forwarding (1/2)

•  What changes need to be made here?
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Datapath for Forwarding (2/2)
• Handled by forwarding unit
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction
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Administrivia

• HW 5 (still) due tomorrow
• Project 2 (still) due Sunday

– Reduced lenience for botched submissions

– Use the provided script to check your 
submission after submitting!

– Make sure that only one partner has a 
submission on file, with his partner listed!
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction
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Data Hazard: Loads (1/4)

• Recall:  Dataflow backwards in time are 
hazards

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Data Hazard: Loads (1/4)

• Recall:  Dataflow backwards in time are 
hazards
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Data Hazard: Loads (1/4)

• Recall:  Dataflow backwards in time are 
hazards

• Can’t solve all cases with forwarding
– Must stall instruction dependent on load, 

then forward (more hardware)

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”
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Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg  D$ Regbub
ble

or   $t7,$t0,$t6 I$

A
L

UReg  D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg  D$ Regbub
ble

or   $t7,$t0,$t6 I$

A
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UReg  D$bub
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lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg
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Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg  D$ Regbub
ble

or   $t7,$t0,$t6 I$

A
L

UReg  D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg

How to stall 
just part of 
pipeline?
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Data Hazard: Loads (2/4)

• Hardware stalls pipeline
– Called “hardware interlock”

sub $t3,$t0,$t2

A
L

UI$ Reg  D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg  D$ Regbub
ble

or   $t7,$t0,$t6 I$

A
L

UReg  D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg  D$ Reg

Schematically, this is what we 
want, but in reality stalls done 
“horizontally”

How to stall 
just part of 
pipeline?

7/30/2014 Summer 2014 -- Lecture #22 43



Data Hazard: Loads (3/4)

• Stall is equivalent to nop
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Data Hazard: Loads (3/4)

• Stall is equivalent to nop

sub $t3,$t0,$t2
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Data Hazard: Loads (3/4)

• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or   $t7,$t0,$t6 I$
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nop
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Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load, 

then the hardware interlock will stall it for one 
cycle
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Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load, 

then the hardware interlock will stall it for one 
cycle

– Letting the hardware stall the instruction in 
the delay slot is equivalent to putting a nop in 
the slot  (except the latter uses more code 
space)
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Data Hazard: Loads (4/4)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load, 

then the hardware interlock will stall it for one 
cycle

– Letting the hardware stall the instruction in 
the delay slot is equivalent to putting a nop in 
the slot  (except the latter uses more code 
space)

Idea:  Let the compiler put an unrelated 
instruction in that slot → no stall!
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the 
next instruction!

• MIPS code for  D=A+B; E=A+C;

# Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the 
next instruction!

• MIPS code for  D=A+B; E=A+C;

# Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the 
next instruction!

• MIPS code for  D=A+B; E=A+C;

# Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

# Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the 
next instruction!

• MIPS code for  D=A+B; E=A+C;

# Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

# Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles
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Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the 
next instruction!

• MIPS code for  D=A+B; E=A+C;

# Method 1:
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

# Method 2:
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Stall!

Stall!

13 cycles 11 cycles
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction

7/30/2014 Summer 2014 -- Lecture #22 55



3. Control Hazards

• Branch (beq, bne) determines flow of 
control

– Fetching next instruction depends on 
branch outcome

– Pipeline can’t always fetch correct 
instruction
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3. Control Hazards

• Branch (beq, bne) determines flow of 
control

– Fetching next instruction depends on 
branch outcome

– Pipeline can’t always fetch correct 
instruction

● Still working on ID stage of branch
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3. Control Hazards

• Branch (beq, bne) determines flow of 
control

– Fetching next instruction depends on 
branch outcome

– Pipeline can’t always fetch correct 
instruction

● Still working on ID stage of branch

• Simple Solution:  Stall on every branch 
until we have the new PC value

– How long must we stall?
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Branch Stall
• When is comparison result available?

  I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg
A

L
U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
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r
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r
d
e
r

Time (clock cycles)
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Branch Stall
• When is comparison result available?

  I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg
A

L
U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
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r

O
r
d
e
r

Time (clock cycles)

TWO bubbles 
required per 
branch!
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3. Control Hazard: Branching

• Option #1:  Insert special branch 
comparator in ID stage

– As soon as instruction is decoded, 
immediately make a decision and set the 
new value of the PC
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3. Control Hazard: Branching

• Option #1:  Insert special branch 
comparator in ID stage

– As soon as instruction is decoded, 
immediately make a decision and set the 
new value of the PC

– Benefit:  Branch decision made in 2nd 
stage, so only one nop is needed instead of 
two

– Side Note:  This means that branches are 
idle in EX, MEM, and WB
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Improved Branch Stall
• When is comparison result available?

  I$

beq

Instr 1

Instr 2
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A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg
A

L
U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Improved Branch Stall
• When is comparison result available?

  I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg
A

L
U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Only one 
bubble 
required 
now
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Datapath for ID Branch Comparator

•  What changes need to be made here?
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Datapath for ID Branch Comparator

• Handled by hazard detection unit
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3. Control Hazard: Branching

• Option #2:  Branch Prediction – guess 
outcome of a branch, fix afterwards if 
necessary
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3. Control Hazard: Branching

• Option #2:  Branch Prediction – guess 
outcome of a branch, fix afterwards if 
necessary

– Must cancel (flush) all instructions in 
pipeline that depended on guess that was 
wrong

– How many instructions do we end up 
flushing?
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3. Control Hazard: Branching

• Option #2:  Branch Prediction – guess 
outcome of a branch, fix afterwards if 
necessary

– Must cancel (flush) all instructions in 
pipeline that depended on guess that was 
wrong

– How many instructions do we end up 
flushing?

• Achieve simplest hardware if we predict 
that all branches are NOT taken
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3. Control Hazard: Branching

• Option #3:  Branch delay slot
– Whether or not we take the branch, always 

execute the instruction immediately 
following the branch
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3. Control Hazard: Branching

• Option #3:  Branch delay slot
– Whether or not we take the branch, always 

execute the instruction immediately 
following the branch

– Worst-Case:  Put a nop in the branch-delay 
slot
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3. Control Hazard: Branching

• Option #3:  Branch delay slot
– Whether or not we take the branch, always 

execute the instruction immediately 
following the branch

– Worst-Case:  Put a nop in the branch-delay 
slot

– Better Case:  Move an instruction from 
before the branch into the branch-delay 
slot 

● Must not affect the logic of program
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3. Control Hazard: Branching

• MIPS uses this delayed branch 
concept

– Re-ordering instructions is a common 
way to speed up programs

– Compiler finds an instruction to put in 
the branch delay slot ≈ 50% of the time
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3. Control Hazard: Branching

• MIPS uses this delayed branch 
concept

– Re-ordering instructions is a common 
way to speed up programs

– Compiler finds an instruction to put in 
the branch delay slot ≈ 50% of the time

• Jumps also have a delay slot
– Why is one needed?
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Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Nondelayed Branch
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Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

Exit:
76



Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit:
77



Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:
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Delayed Branch Example

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or  $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:

Why not any of the 
other instructions?
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Delayed Jump in MIPS

• MIPS Green Sheet for jal:
R[31]=PC+8; PC=JumpAddr
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Delayed Jump in MIPS

• MIPS Green Sheet for jal:
R[31]=PC+8; PC=JumpAddr

– PC+8 because of jump delay slot!
– Instruction at PC+4 always gets 

executed before jal jumps to 
label, so return to PC+8
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Technology Break
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Agenda

• Structural Hazards
• Data Hazards

– Forwarding

• Administrivia
• Data Hazards (Continued)

– Load Delay Slot

• Control Hazards
– Branch and Jump Delay Slots
– Branch Prediction
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Dynamic Branch Prediction

• Branch penalty is more significant in deeper 
pipelines

– Also superscalar pipelines (discussed tomorrow)
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Dynamic Branch Prediction

• Branch penalty is more significant in deeper 
pipelines

– Also superscalar pipelines (discussed tomorrow)

• Use dynamic branch prediction
– Have branch prediction buffer (a.k.a. branch 

history table) that stores outcomes (taken/not 
taken) indexed by recent branch instruction 
addresses
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Dynamic Branch Prediction

• Branch penalty is more significant in deeper 
pipelines

– Also superscalar pipelines (discussed tomorrow)

• Use dynamic branch prediction
– Have branch prediction buffer (a.k.a. branch 

history table) that stores outcomes (taken/not 
taken) indexed by recent branch instruction 
addresses

– To execute a branch
● Check table and predict the same outcome for next fetch
● If wrong, flush pipeline and flip prediction
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1-Bit Predictor: Shortcoming
• Examine the code below, assuming both loops will be 

executed multiple times:

outer: …
       …
inner: …
       …
       beq …, …, inner
       …
       beq …, …, outer
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1-Bit Predictor: Shortcoming
• Examine the code below, assuming both loops will be 

executed multiple times:

outer: …
       …
inner: …
       …
       beq …, …, inner
       …
       beq …, …, outer

• Inner loop branches are predicted wrong twice!
● Predict as taken on last iteration of inner loop
● Then predict as not taken on first iteration of inner loop next 

time around
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2-Bit Predictor
• Only change prediction after two successive 

incorrect predictions
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Question:  For each code sequences 
below, choose one of the statements 
below:

 (B)   No stalls as is

(G)   No stalls with forwarding

(P)   Must stall

1:
 lw $t0,0($t0)
 add $t1,$t0,$t0

2:
 add $t1,$t0,$t0
 addi $t2,$t0,5
 addi $t4,$t1,5

3: 
 addi $t1,$t0,1
 addi $t2,$t0,2
 addi $t3,$t0,2
 addi $t3,$t0,4
 addi $t5,$t1,5
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Code Sequence 1

  I$

lw

add

instr

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Code Sequence 1

  I$

lw

add

instr

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Code Sequence 1

  I$

lw

add

instr

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Must 
stall
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Code Sequence 2

  I$

add

addi

addi

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Code Sequence 2

  I$

add

addi

addi

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

no forwarding
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Code Sequence 2

  I$

add

addi

addi

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
forwarding

no forwarding
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Code Sequence 2

  I$

add

addi

addi

instr

instr
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
forwarding

no forwarding

No stalls 
with 
forwarding
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Code Sequence 3

  I$

addi

addi

addi

addi

addi
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Code Sequence 3

  I$

addi

addi

addi

addi

addi
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)
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Code Sequence 3

  I$

addi

addi

addi

addi

addi
A

L
U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

U  I$ Reg   D$ Reg

A
L

UReg   D$ Reg

A
L

U  I$ Reg   D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

No stalls as 
is
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Summary

• Hazards reduce effectiveness of pipelining
– Cause stalls/bubbles

• Structural Hazards
– Conflict in use of datapath component

• Data Hazards
– Need to wait for result of a previous instruction

• Control Hazards
– Address of next instruction uncertain/unknown
– Branch and jump delay slots
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