
CS 61C: Great Ideas in
Computer Architecture

Multiple Instruction
Issue/Virtual Memory

Introduction

Guest Lecturer/TA: Andrew Luo

8/31/2014 Summer 2014 - Lecture 23 1

Great Idea #4: Parallelism

8/31/2014 Summer 2014 - Lecture 23 2

Smart
Phone

Warehouse
Scale

Computer

Leverage
Parallelism &
Achieve High
Performance

Core …

Memory

Input/Output

Computer

Core

• Parallel Requests
Assigned to computer

e.g. search “Garcia”

• Parallel Threads
Assigned to core

e.g. lookup, ads

• Parallel Instructions
> 1 instruction @ one time

e.g. 5 pipelined instructions

• Parallel Data
> 1 data item @ one time

e.g. add of 4 pairs of words

• Hardware descriptions
All gates functioning in

parallel at same time

Software Hardware

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A0+B0 A1+B1 A2+B2 A3+B3

Logic Gates

Review of Last Lecture (1/2)

•A hazard is a situation that prevents the next
instruction from executing in the next clock
cycle
•Structural hazard

• A required resource is needed by multiple instructions
in different stages

•Data hazard
• Data dependency between instructions
• A later instruction requires the result of an earlier

instruction
•Control hazard

• The flow of execution depends on the previous
instruction (ex. jumps, branches)

8/31/2014 Summer 2014 - Lecture 23 3

Review of Last Lecture (2/2)

•Hazards hurt the performance of pipelined
processors
•Stalling can be applied to any hazard, but hurt

performance… better solutions?
•Structural hazards

• Have separate structures for each stage

•Data hazards
• Forwarding

•Control hazards
• Branch prediction (mitigates), branch delay slot

8/31/2014 Summer 2014 - Lecture 23 4

Agenda

•Multiple Issue

•Administrivia

•Virtual Memory Introduction

8/31/2014 Summer 2014 - Lecture 23 5

Multiple Issue

•Modern processors can issue and execute
multiple instructions per clock cycle

•CPI < 1 (superscalar), so can use Instructions
Per Cycle (IPC) instead

•e.g. 4 GHz 4-way multiple-issue can execute 16
billion IPS with peak CPI = 0.25 and peak IPC =
4
•But dependencies and structural hazards reduce

this in practice

8/31/2014 Summer 2014 - Lecture 23 6

Multiple Issue

•Static multiple issue
•Compiler reorders independent/commutative

instructions to be issued together
•Compiler detects and avoids hazards

•Dynamic multiple issue
•CPU examines pipeline and chooses instructions to

reorder/issue
•CPU can resolve hazards at runtime

8/31/2014 Summer 2014 - Lecture 23 7

Superscalar Laundry: Parallel per
stage

•More resources, HW to match mix of parallel tasks?
8/31/2014 Summer 2014 - Lecture 23 8

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

(light clothing)
(dark clothing)

(very dirty clothing)

(light clothing)
(dark clothing)

(very dirty clothing)

303030 3030

Pipeline Depth and Issue Width

• Intel Processors over Time

8/31/2014 Summer 2014 - Lecture 23 9

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Cores Power

i486 1989 25 MHz 5 1 1 5W

Pentium 1993 66 MHz 5 2 1 10W

Pentium Pro 1997 200 MHz 10 3 1 29W

P4 Willamette 2001 2000 MHz 22 3 1 75W

P4 Prescott 2004 3600 MHz 31 3 1 103W

Core 2 Conroe 2006 2930 MHz 12-14 4* 2 75W

Core 2 Penryn 2008 2930 MHz 12-14 4* 4 95W

Core i7 Westmere 2010 3460 MHz 14 4* 6 130W

Xeon Sandy Bridge 2012 3100 MHz 14-19 4* 8 150W

Xeon Ivy Bridge 2014 2800 MHz 14-19 4* 15 155W

Pipeline Depth and Issue Width

1

10

100

1000

10000

1989 1992 1995 1998 2001 2004 2007 2010

Clock

Power

Pipeline
Stages

Issue width

Cores

8/31/2014 Summer 2014 - Lecture 23 10

Static Multiple Issue

•Compiler reorders independent/commutative
instructions to be issued together (an “issue packet”)
• Group of instructions that can be issued on a single cycle
• Determined by structural resources required
• Specifies multiple concurrent operations

8/31/2014 Summer 2014 - Lecture 23 11

Scheduling Static Multiple Issue

•Compiler must remove some/all hazards
•Reorder instructions into issue packets
•No dependencies within a packet
•Possibly some dependencies between packets

• Varies between ISAs; compiler must know!

•Pad with nops if necessary

8/31/2014 Summer 2014 - Lecture 23 12

Dynamic Multiple Issue

•Used in “superscalar” processors

•CPU decides whether to issue 0, 1, 2, …
instructions each cycle
•Goal is to avoid structural and data hazards

•Avoids need for compiler scheduling
•Though it may still help
•Code semantics ensured by the CPU

8/31/2014 Summer 2014 - Lecture 23 13

Dynamic Pipeline Scheduling

•Allow the CPU to execute instructions out of order to
avoid stalls
• But commit result to registers in order

•Example: lw $t0, 20($s2)

addu $t1, $t0, $t2

subu $s4, $s4, $t3

slti $t5, $s4, 20

• Can start subu while addu is waiting for lw

•Especially useful on cache misses; can execute many
instructions while waiting!

8/31/2014 Summer 2014 - Lecture 23 14

Why Do Dynamic Scheduling?

•Why not just let the compiler schedule code?

•Not all stalls are predicable
• e.g. cache misses

•Can’t always schedule around branches
• Branch outcome is dynamically determined by I/O

•Different implementations of an ISA have different
latencies and hazards
• Forward compatibility and optimizations

8/31/2014 Summer 2014 - Lecture 23 15

Speculation

• “Guess” what to do with an instruction
• Start operation as soon as possible
• Check whether guess was right and roll back if necessary

•Examples:
• Speculate on branch outcome (Branch Prediction)

• Roll back if path taken is different

• Speculate on load
• Load into an internal register before instruction to minimize time

waiting for memory

•Can be done in hardware or by compiler

•Common to static and dynamic multiple issue

8/31/2014 Summer 2014 - Lecture 23 16

Not a Simple Linear Pipeline

3 major units operating in parallel:
• Instruction fetch and issue unit

• Issues instructions in program order

• Many parallel functional (execution) units
• Each unit has an input buffer called a Reservation Station

• Holds operands and records the operation

• Can execute instructions out-of-order (OOO)

• Commit unit
• Saves results from functional units in Reorder Buffers

• Stores results once branch resolved so OK to execute

• Commits results in program order

8/31/2014 Summer 2014 - Lecture 23 17

Out-of-Order Execution (1/2)

Can also unroll loops in hardware

1) Fetch instructions in program order (≤ 4/clock)

2) Predict branches as taken/untaken

3) To avoid hazards on registers, rename registers
using a set of internal registers (≈ 80 registers)

4) Collection of renamed instructions might execute in
a window (≈ 60 instructions)

8/31/2014 Summer 2014 - Lecture 23 18

Out-of-Order Execution (2/2)

5) Execute instructions with ready operands in 1 of
multiple functional units (ALUs, FPUs, Ld/St)

6) Buffer results of executed instructions until
predicted branches are resolved in reorder buffer

7) If predicted branch correctly, commit results in
program order

8) If predicted branch incorrectly, discard all
dependent results and start with correct PC

8/31/2014 Summer 2014 - Lecture 23 19

Dynamically Scheduled CPU

8/31/2014 Summer 2014 - Lecture 23 20

Results also sent
to any waiting
reservation
stations (think:
forwarding!)Reorder buffer

for register and
memory writes

Can supply
operands for
issued
instructions

Preserves
dependencies

Wait here
until all
operands
available

Branch prediction,
Register renaming

Execute…

… and Hold

Out-Of-Order Intel

• All use O-O-O since 2001

8/31/2014 Summer 2014 - Lecture 23 21

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25 MHz 5 1 No 1 5W

Pentium 1993 66 MHz 5 2 No 1 10W

Pentium Pro 1997 200 MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000 MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600 MHz 31 3 Yes 1 103W

Core 2 Conroe 2006 2930 MHz 12-14 4* Yes 2 75W

Core 2 Penryn 2008 2930 MHz 12-14 4* Yes 4 95W

Core i7

Westmere

2010 3460 MHz 14 4* Yes 6 130W

Xeon Sandy

Bridge

2012 3100 MHz 14-19 4* Yes 8 150W

Xeon Ivy Bridge 2014 2800 MHz 14-19 4* Yes 15 155W

Intel Nehalem Microarchitecture

8/31/2014 Summer 2014 - Lecture 23 22

Intel Nehalem Pipeline Flow

8/31/2014 Summer 2014 - Lecture 23 23

Does Multiple Issue Work?

•Yes, but not as much as we’d like

•Programs have real dependencies that limit ILP

•Some dependencies are hard to eliminate
• e.g. pointer aliasing (restrict keyword helps)

•Some parallelism is hard to expose
• Limited window size during instruction issue

•Memory delays and limited bandwidth
• Hard to keep pipelines full

•Speculation can help if done well

8/31/2014 Summer 2014 - Lecture 23 24

Agenda

•Multiple Issue

•Administrivia

•Virtual Memory Introduction

8/31/2014 Summer 2014 - Lecture 23 25

Administrivia

•HW5 due tonight

•Project 2 (Performance Optimization) due
Sunday

•No lab today
•TAs will be in lab to check-off make up labs
•Highly encouraged to make up labs today if you’re

behind – treated as Tuesday checkoff for lateness

•Project 3 (Pipelined Processor in Logisim)
released Friday/Saturday

8/31/2014 Summer 2014 - Lecture 23 26

Agenda

•Multiple Issue

•Administrivia

•Virtual Memory Introduction

8/31/2014 Summer 2014 - Lecture 23 27

Regs

L2 Cache

Memory

Disk

Tape

Instr Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

L1 Cache
Blocks

Memory Hierarchy

8/31/2014 Summer 2014 - Lecture 23 28

Next Up:
Virtual

Memory

Earlier:
Caches

Memory Hierarchy Requirements

• Principle of Locality
• Allows caches to offer (close to) speed of cache memory with size of DRAM

memory

• Can we use this at the next level to give speed of DRAM memory with size of
Disk memory?

• What other things do we need from our memory system?

8/31/2014 Summer 2014 - Lecture 23 29

Memory Hierarchy Requirements

• Allow multiple processes to simultaneously occupy memory and provide
protection
• Don’t let programs read from or write to each other’s memories

• Give each program the illusion that it has its own private address space
• Suppose a program has base address 0x00400000, then different processes each

think their code resides at the same address

• Each program must have a different view of memory

8/31/2014 Summer 2014 - Lecture 23 30

Virtual Memory

• Next level in the memory hierarchy
• Provides illusion of very large main memory

• Working set of “pages” residing in main memory
(subset of all pages residing on disk)

• Main goal: Avoid reaching all the way back to disk as much as possible

• Additional goals:
• Let OS share memory among many programs and protect them from each other

• Each process thinks it has all the memory to itself

8/31/2014 Summer 2014 - Lecture 23 31

Virtual to Physical Address Translation

•Each program operates in its own virtual address
space and thinks it’s the only program running

•Each is protected from the other

•OS can decide where each goes in memory

•Hardware gives virtual  physical mapping
8/31/2014 Summer 2014 - Lecture 23 32

Program
operates in its

virtual
address space

Virtual
Address (VA)

(inst. fetch
load, store)

HW
mapping

Physical
Address (PA)

(inst. fetch
load, store)

Physical
memory

(including
caches)

VM Analogy (1/2)

• Trying to find a book in the UCB library system

• Book title is like virtual address (VA)
• What you want/are requesting

• Book call number is like physical address (PA)
• Where it is actually located

• Card catalogue is like a page table (PT)
• Maps from book title to call number

• Does not contain the actual that data you want

• The catalogue itself takes up space in the library

8/31/2014 Summer 2014 - Lecture 23 33

VM Analogy (2/2)

• Indication of current location within the library system is like valid bit
• Valid if in current library (main memory) vs. invalid if in another branch (disk)

• Found on the card in the card catalogue

• Availability/terms of use like access rights
• What you are allowed to do with the book

(ability to check out, duration, etc.)

• Also found on the card in the card catalogue

8/31/2014 Summer 2014 - Lecture 23 34

Mapping VM to PM

• Divide into equal sized chunks (usually
4-8 KiB)

• Any chunk of Virtual Memory can be
assigned to any chunk of Physical
Memory (“page”)

8/31/2014 Summer 2014 - Lecture 23 350

Physical Memory


Virtual Memory

Code

Static

Heap

Stack

64 MB

0

Paging Organization

8/31/2014 Summer 2014 - Lecture 23 36

Addr
Trans
MAP

page 0 4 Ki

4 Ki

4 Ki

0x00000
0x01000

0x1F000

Virtual
Memory

Virtual
Address

page 1

page 31

4 Ki0x02000 page 2
...... ...

page 00x0000

0x1000

0x7000

Physical
Address

Physical
Memory

4 Ki

4 Ki

4 Ki

page 1

page 7

...... ...

• Here assume page size is 4 KiB
– Page is both unit of mapping and unit of transfer

between disk and physical memory

Virtual Memory Mapping Function

• How large is main memory? Disk?
• Don’t know! Designed to be interchangeable components

• Need a system that works regardless of sizes

• Use lookup table (page table) to deal with arbitrary mapping
• Index lookup table by # of pages in VM

(not all entries will be used/valid)

• Size of PM will affect size of stored translation

8/31/2014 Summer 2014 - Lecture 23 37

Address Mapping

• Pages are aligned in memory
• Border address of each page has same lowest bits

• Page size (P bytes) is same in VM and PM, so denote lowest PO = log2(P) bits as
page offset

• Use remaining upper address bits in mapping
• Tells you which page you want (similar to Tag)

8/31/2014 Summer 2014 - Lecture 23 38

Page OffsetVirtual Page #Page OffsetPhysical Page #

Same SizeNot necessarily
the same size

Address Mapping: Page Table

•Page Table functionality:
• Incoming request is Virtual Address (VA),

want Physical Address (PA)
• Physical Offset = Virtual Offset (page-aligned)
• So just swap Virtual Page Number (VPN) for Physical Page

Number (PPN)

• Implementation?
• Use VPN as index into PT
• Store PPN and management bits (Valid, Access Rights)
• Does NOT store actual data (the data sits in PM)

8/31/2014 Summer 2014 - Lecture 23 39

Page Table Layout

8/31/2014 Summer 2014 - Lecture 23 40

V AR PPN

X XX

Virtual Address: VPN offset

Page Table

1) Index
into PT

using VPN

2) Check
Valid and

Access
Rights bits

+

3) Combine
PPN and

offset

Physical
Address

4) Use PA
to access
memory

Page Table Entry Format

• Contains either PPN or indication not in main memory

• Valid = Valid page table entry
• 1  virtual page is in physical memory

• 0  OS needs to fetch page from disk

• Access Rights checked on every access to see if allowed (provides
protection)
• Read Only: Can read, but not write page

• Read/Write: Read or write data on page

• Executable: Can fetch instructions from page

8/31/2014 Summer 2014 - Lecture 23 41

Page Tables

• A page table (PT) contains the mapping of virtual addresses to physical
addresses

• Where should PT be located?
• Physical memory, so faster to access and can be shared by multiple processors

• The OS maintains the PTs
• Each process has its own page table

• “State” of a process is PC, all registers, and PT

• OS stores address of the PT of the current process in the Page Table Base
Register

8/31/2014 Summer 2014 - Lecture 23 42

Paging/Virtual Memory Multiple Processes

8/31/2014 Summer 2014 - Lecture 23 43

User B:
Virtual Memory



Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

Page
Table A

Page
Table B

User A:
Virtual Memory



0
0

Physical
Memory

64 MB

Caches vs. Virtual Memory

Caches Virtual Memory

Block Page

Cache Miss Page Fault

Block Size: 32-64B Page Size: 4KiB-8KiB

Placement:
Direct Mapped, Fully Associative
N-way Set Associative (almost always)

Replacement:
LRU or Random LRU

Write Thru or Back Write Back

8/31/2014 Summer 2014 - Lecture 23 44

Technology Break

8/31/2014 Summer 2014 - Lecture 23 45

Notes on Page Table

• OS must reserve “Swap Space” on disk
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first

• If not, OS swaps some old pages to disk

• (Least Recently Used to pick pages to swap)

• Each process has own Page Table

• Will add details, but Page Table is essence of Virtual Memory

•A program’s address space
contains 4 regions:
• stack: local variables, grows

downward
• heap: space requested for pointers

via malloc() ; resizes dynamically,
grows upward

• static data: variables declared
outside main, does not grow or
shrink

• code: loaded when program starts,
does not change code

static data

heap

stack

For now, OS somehow

prevents accesses between

stack and heap (gray hash

lines).

~ FFFF FFFFhex

~ 0hex

Why would a process need to “grow”?

Virtual Memory and Caches

•Physical memory is slow, so we cache data
• Why not do the same with the page table?

•Translation Lookaside Buffer (TLB) is the equivalent
of cache for the page table

8/31/2014 Summer 2014 - Lecture 23 48

Virtual to Physical Address Translation

1. Check TLB

2. Check page tables (in main memory)

3. Page fault – OS handles

4. OS: Check disk

5. OS: Swap on disk/Segmentation fault

8/31/2014 Summer 2014 - Lecture 23 49

Translation Look-Aside Buffers (TLBs)

• TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct mapped, set associative,
or fully associative

Processor
TLB

Lookup
Cache

Main

Memory

VA PA

miss

hit data

Trans-

lation

hit

miss

On TLB miss, get page table entry from main memory

Context Switching and VM

•Context Switching now requires that both the
TLB and caches be flushed
• In reality, TLB entries have a context tag

8/31/2014 Summer 2014 - Lecture 23 51

1) Locality is important yet different for cache and virtual
memory (VM): temporal locality for caches but spatial
locality for VM

2) VM helps both with security and cost

Peer Instruction

12
blue) FF
green) FT
purple) TF
yellow) TT

1) Locality is important yet different for cache and
virtual memory (VM): temporal locality for caches
but spatial locality for VM

2) VM helps both with security and cost

F A L S E
1. No. Both for VM and cache

2. Yes. Protection and
a bit smaller memory

T R U E
12

blue) FF
green) FT
purple) TF
yellow) TT

Peer Instruction Answer

Summary

• More aggressive performance options:
• Longer pipelines

• Superscalar (multiple issue)

• Out-of-order execution

• Speculation

• Virtual memory bridges memory and disk
• Provides illusion of independent address spaces to processes and protects them

from each other

• VA to PA using Page Table

• TLB

8/31/2014 Summer 2014 - Lecture 23 54

