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Review of Last Lecture (1/2)

• Warehouse Scale Computing
– Example of parallel processing in the post-PC era
– Servers on a rack, rack part of cluster 
– Issues to handle include load balancing, failures, 

power usage (sensitive to cost & energy efficiency)
– PUE = Total building power / IT equipment power
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Request-Level Parallelism (RLP)
In WSCs

• Hundreds or thousands of requests per sec
– Many users accessing popular Internet 

services like web search, social 
networking, …

– Such requests are largely independent
● Often involve read-mostly databases
● Rarely involve strict read–write data sharing or 

synchronization across requests

• Computation easily partitioned within a 
request and across different requests
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Google Query-Serving 
Architecture
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Anatomy of a Web Search
• Google “Leonhard Euler”
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Anatomy of a Web Search (1 of 3)

• Google “Leonhard Euler”
– Direct request to “closest” Google Warehouse Scale 

Computer
– Front-end load balancer directs request to one of many 

arrays (cluster of servers) within WSC
– Within array, select one of many Google Web Servers 

(GWS) to handle the request and compose the response 
pages

– GWS communicates with Index Servers to find 
documents that contain the search words, “Leonhard”, 
“Euler”, uses location of search as well

– Return document list with associated relevance score
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Anatomy of a Web Search (2 of 3)

• In parallel,
– Ad system: run ad auction for bidders on 

search terms
– Get images of various Leonhard Eulers

• Use docids (document IDs) to access indexed 
documents 

• Compose the page
– Result document extracts (with keyword in 

context) ordered by relevance score
– Sponsored links (along the top) and 

advertisements (along the sides)
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Anatomy of a Web Search (3 of 3)

• Implementation strategy
– Randomly distribute the entries
– Make many copies of data (a.k.a. “replicas”)
– Load balance requests across replicas

• Redundant copies of indices and documents
– Breaks up hot spots, e.g. “Guardians of the Galaxy”
– Increases opportunities for request-level parallelism
– Makes the system more tolerant of failures
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Agenda
• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)
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Data-Level Parallelism (DLP)

• Multiple kinds:
– Lots of data in memory that can be operated on 

in parallel (e.g. adding together 2 arrays)
– Lots of data on many disks that can be operated 

on in parallel (e.g. searching for documents)

1) SIMD does Data-Level Parallelism (DLP) in 
memory

2) Today’s lecture and Lab 12 does DLP across 
many servers and disks using MapReduce
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Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)
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What is MapReduce?

• Simple data-parallel programming model 
designed for scalability and fault-tolerance

• Pioneered by Google
– Processes >25 petabytes of data per day

• Popularized by open-source Hadoop 
project

– Used at Yahoo!, Facebook, Amazon, …
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What is MapReduce used 
for?

• At Google:
– Index construction for Google Search
– Article clustering for Google News
– Statistical machine translation
– For computing multi-layer street maps

• At Yahoo!:
– “Web map” powering Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection
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MapReduce Design Goals

1. Scalability to large data volumes:
– 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:
– Commodity machines (cheap, but unreliable)
– Commodity network
– Automatic fault-tolerance (fewer administrators)
– Easy to use (fewer programmers)

 

Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing 
on Large Clusters,” 6th USENIX Symposium on Operating Systems Design and 
Implementation, 2004. (optional reading, linked on course homepage – a 
digestible CS paper at the 61C level)
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MapReduce Processing: 
“Divide and Conquer” (1/3)

• Apply Map function to user supplied 
record of key/value pairs

– Slice data into “shards” or “splits” and 
distribute to workers

– Compute set of intermediate key/value 
pairs

map(in_key,in_val):
// DO WORK HERE 
emit(interm_key,interm_val)
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MapReduce Processing: 
“Divide and Conquer” (2/3)

• Apply Reduce operation to all values 
that share same key in order to 
combine derived data properly

– Combines all intermediate values for a 
particular key

– Produces a set of merged output values
reduce(interm_key,list(interm_val)): 

// DO WORK HERE
emit(out_key, out_val)
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MapReduce Processing: 
“Divide and Conquer” (3/3)

• User supplies Map and Reduce 
operations in functional model

– Focus on problem, let MapReduce 
library deal with messy details

– Parallelization handled by 
framework/library

– Fault tolerance via re-execution
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Typical Hadoop Cluster
Aggregation switch

Rack switch

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth within rack, 8 Gbps out of rack
• Node specs (Yahoo terasort):

8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf
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Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Execution Walkthrough
– Example 1: Word Count
– Example 2: PageRank (Time Permitting)
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Administrivia

• Project 3 (partners) due Sunday 8/10
• Final Review – Sat 08/09, 2-5pm in 2060 

VLSB
• Final – Fri 8/15, 9am-12pm, 155 Dwinelle

– MIPS Green Sheet provided again
– Two-sided handwritten cheat sheet

● Can use the back side of your midterm cheat 
sheet!
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Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)
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The Combiner (Optional)

• One missing piece for our first example:
– Many times, the output of a single mapper can be 

“compressed” to save on bandwidth and to 
distribute work (usually more map tasks than 
reduce tasks)

– To implement this, we have the combiner:

   combiner(interm_key,list(interm_val)):
 // DO WORK (usually like reducer)

    emit(interm_key2, interm_val2)
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Our Final Execution Sequence

• Map – Apply operations to all input 
key, val

• Combine – Apply reducer operation, 
but distributed across map tasks

• Reduce – Combine all values of a key 
to produce desired output
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MapReduce Processing Example: Count Word 
Occurrences (1/2)

• Pseudo Code: for each word in input, generate <key=word, value=1>

• Reduce sums all counts emitted for a particular word across all mappers

  map(String input_key, String input_value):

    // input_key: document name

    // input_value: document contents

    for each word w in input_value:

      EmitIntermediate(w, "1"); // Produce count of words

  combiner: (same as below reducer)

  reduce(String output_key, Iterator intermediate_values):

    // output_key: a word

    // intermediate_values: a list of counts

    int result = 0;

    for each v in intermediate_values:

      result += ParseInt(v); // get integer from keyvalue

    Emit(output_key, result);
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MapReduce Processing Example: Count Word 
Occurrences (2/2)
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that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

  Reduce 1 Reduce 2

is 1 that 2is 1,1 that 2,2is 1,1,2,2
it 2 

that 2,2,1
not 2

is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute
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Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 26Summer 2014 -- Lecture #26



Execution Setup

• Map invocations distributed by partitioning input data into 
M splits

– Typically 16 MB to 64 MB per piece

• Input processed in parallel on different servers
• Reduce invocations distributed by partitioning intermediate 

key space into R pieces
– e.g. hash(key) mod R

• User picks M >> # servers, R > # servers
– Big M helps with load balancing, recovery from failure
– One output file per R invocation, so not too many
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MapReduce Execution
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Fine granularity 
tasks: many 
more map tasks 
than machines

2000 servers => 
≈ 200,000 Map 
Tasks, ≈ 5,000 
Reduce tasks

Summer 2014 -- Lecture #26



8/06/2014 Summer 2014 -- Lecture #26 29

MapReduce Processing

Shuffle phase



MapReduce Processing
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1. MR 1st splits 
the input files into 
M “splits” then 
starts many 
copies of 
program on 
servers

Shuffle phase
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2. One copy (the 
master) is special. The 
rest are workers. The 
master picks idle 
workers and assigns 
each 1 of M map tasks 
or 1 of R reduce tasks.

Shuffle phase

MapReduce Processing
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3. A map worker reads the 
input split. It parses 
key/value pairs of the input 
data and passes each pair 
to the user-defined map 
function. 

(The intermediate
key/value pairs 
produced by the map 
function are buffered 
in memory.)

Shuffle phase

MapReduce Processing
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4. Periodically, the 
buffered pairs are written 
to local disk, partitioned
into R regions by the 
partitioning function. 

Shuffle phase

MapReduce Processing
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5. When a reduce worker 
has read all intermediate 
data for its partition, it 
sorts it by the intermediate
keys so that all occurrences 
of the same key are 
grouped together.

(The sorting is needed 
because typically many 
different keys map to
the same reduce task )

Shuffle phase

MapReduce Processing
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6. Reduce worker iterates 
over sorted intermediate 
data and for each unique 
intermediate key, it passes 
key and corresponding set 
of values to the user’s 
reduce function.

The output of the 
reduce function is 
appended to a final 
output file for this 
reduce partition.

Shuffle phase

MapReduce Processing
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7. When all map and reduce tasks 
have been completed, the master 
wakes up the user program. 
The MapReduce call in user 
program returns back to user 
code. 

Output of MR is in R 
output files (1 per 
reduce task, with file 
names specified by 
user); often passed into 
another MR job.

Shuffle phase

MapReduce Processing



Technology Break
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What Does the Master Do?

• For each map task and reduce task, keep track:
– State: idle, in-progress, or completed
– Identity of worker server (if not idle)

• For each completed map task
– Stores location and size of R intermediate files
– Updates files and size as corresponding map tasks 

complete

• Location and size are pushed incrementally to 
workers that have in-progress reduce tasks
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MapReduce Processing Time Line

• Master assigns map + reduce tasks to “worker” servers

• As soon as a map task finishes, worker server can be assigned a new map 
or reduce task

• Data shuffle begins as soon as a given Map finishes

• Reduce task begins as soon as all data shuffles finish

• To tolerate faults, reassign task if a worker server “dies”
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MapReduce Failure Handling

• On worker failure:
– Detect failure via periodic heartbeats
– Re-execute completed and in-progress map tasks
– Re-execute in progress reduce tasks
– Task completion committed through master

• Master failure:
– Protocols exist to handle (master failure unlikely), 

but not covered here

• Robust: lost 1600 of 1800 machines once, but 
finished fine
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MapReduce Redundant 
Execution

• Slow workers significantly lengthen completion 
time

– Other jobs consuming resources on machine
– Bad disks with soft errors transfer data very slowly
– Weird things: processor caches disabled (!!)

• Solution: Near end of phase, spawn backup 
copies of tasks

– Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion time
– 3% more resources, large tasks 30% faster
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Towards the end, the master assigns 
uncompleted tasks again; 1st to finish wins

Reducers can start reducing as soon as they 
start to receive Map data

Reduce worker sorts by intermediate 
keys to group all occurrences of same 
key

MapReduce divides computers into 1 master  
and N-1 workers; masters assigns MR tasks

(B)

(G)

(P)

(Y)

42

Question: Which statement is 
NOT true about about 
MapReduce?



Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)
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PageRank: How Google Search 
Works

• Earlier: RLP – how Google handles searching its huge 
index

• Now: How does Google generate that index?
• PageRank is the famous algorithm behind the 

“quality” of Google’s results
– Uses link structure to rank pages, instead of matching only 

against content (keyword)
– Modern google search more sophisticated, but PageRank 

still plays a role
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A Quick Review of CS Theory: 
Graphs

• Def: A set of objects 
connected by links

• The “objects” are called 
Nodes

• The “links” are called 
Edges

• Nodes: {1, 2, 3, 4, 5, 6} 
• Edges: 

{(6, 4), (4, 5), (4, 3), 
  (3, 2), (5, 2), (5, 1),
  (1, 2)}
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Directed Graphs

• Previously assumed that 
all edges in the graph 
were two-way

• Now we have one-way 
edges:

• Nodes: Same as before
• Edges: (order matters)

– {(6, 4), (4, 5), (5, 1),
  (5, 2), (2, 1)}

8/06/2014 Summer 2014 -- Lecture #26 46



The Theory Behind PageRank

• The Internet is really a directed 
graph:

– Nodes: webpages
– Edges: links between webpages

• Terms (Suppose we have a page A 
that links to page B): 

– Page A has a forward-link to page B
– Page B has a back-link from page A
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The Magic Formula
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The Magic Formula
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Node u is the vertex (webpage) we’re 
interested in computing the PageRank of



The Magic Formula
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R’(u) is the PageRank of Node u



The Magic Formula
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c is a normalization factor that we 
can ignore for our purposes



The Magic Formula
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E(u) is a “personalization” factor that 
we can ignore for our purposes



The Magic Formula
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We sum over all backlinks of u: the PageRank of 
the website v linking to u divided by the number 

of forward-links that v has



But wait! This is Recursive!

• Uh oh! We have a recursive formula with no 
base-case

• We rely on convergence
– Choose some initial PageRank value for each 

site

– Simultaneously compute/update PageRanks

– When our Delta is small between iterations:
● Stop, call it “good enough”

•  An example of fixed point iteration (similar to 
proj2, actually)
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Sounds Easy. Why MapReduce?

• Assume in the best case that we’ve 
crawled and captured the internet as a 
series of (url, outgoing links) pairs

• We need about 50 iterations of the 
PageRank algorithm for it to converge

• We quickly see that running it on one 
machine is not viable
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Building a Web Index using 
PageRank

• Scrape Webpages
• Strip out content, keep only links (input is key 

= url, value = links on page at url)
– This step is actually pushed into the 

MapReduce

• Feed into PageRank Mapreduce
• Sort Documents by PageRank
• Post-process to build the indices that our 

Google RLP example used
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Using MapReduce to Compute 
PageRank, Step 1

Map:
– Input: 

● key = URL of 
website 

● val = source of 
website

– Output for each 
outgoing link: 

● key = URL of 
website

● val = outgoing link 
url

Reduce:
– Input:

● key = URL of 
website

● values = Iterable of 
all outgoing links 
from that website

– Output:
● key = URL of 

website
● value = Starting 

PageRank, 
Outgoing links from 
that website
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Using MapReduce to Compute 
PageRank, Step 2

Map:
– Input: 

● key = URL of website 
● val = PageRank, 

Outgoing links from that 
website

– Output for each 
outgoing link: 

● key = Outgoing Link URL
● val = Original Website 

URL, PageRank, # 
Outgoing links

Reduce:
– Input:

● key = Outgoing Link URL
● values = Iterable of all 

links to Outgoing Link 
URL

– Output:
● key = Outgoing Link URL
● value = Newly computed 

PageRank (using the 
formula), Outgoing links 
from document @ 
Outgoing Link URL
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Repeat this step until PageRank converges – chained MapReduce!



Using MapReduce to Compute 
PageRank, Step 3

• Finally, we want to 
sort by PageRank 
to get a useful 
index

• MapReduce’s built 
in sorting makes 
this easy!

Map:
– Input:

● key = Website URL
● value = PageRank, 

Outgoing Links
– Output:

● key = PageRank
● value = Website 

URL
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Using MapReduce to Compute 
PageRank, Step 3

Reduce:
– In case we have 

duplicate PageRanks
– Input:

● key = PageRank
● value = Iterable of 

URLs with that 
PageRank

– Output (for each URL 
in the Iterable):

● key = PageRank
● value = Website URL

Since MapReduce 
automatically sorts 
the output from the 
reducer and joins it 
together We’re 
done!
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Using the PageRanked Index

• Do our usual keyword search with RLP 
implemented

• Take our results, sort by our pre-generated 
PageRank values

• Send results to user!
• PageRank is still the basis for Google 

Search 
– (of course, there are many proprietary 

enhancements in addition)
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Our algorithm chains multiple map/reduce 
calls to compute our final set of PageRanks

PageRank generally converges after about 10 
iterations of our algorithm

PageRank was designed to be 
implemented using the MapReduce 
framework

We can exactly compute PageRank using our 
algorithm

(B)

(G)

(P)

(Y)

62

Question: Which of the following statements 
is TRUE about our implementation of the 
MapReduce PageRank Algorithm?



• MapReduce Data Parallelism
– Divide large data set into pieces for independent 

parallel processing
– Combine and process intermediate results to 

obtain final result 

• Simple to Understand
– But we can still build complicated software
– Chaining lets us use the MapReduce paradigm for 

many common graph and mathematical tasks

• MapReduce is a “Real-World” Tool
– Worker restart, monitoring to handle failures
– Google PageRank, Facebook Analytics 
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Summary
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• Some PageRank slides adapted from 
http://www.cs.toronto.edu/~jasper/
PageRankForMapReduceSmall.pdf

• PageRank Paper:
– Lawrence Page, Sergey Brin, Rajeev 

Motwani, Terry Winograd. 
The PageRank Citation 
Ranking: Bringing Order to the Web. 
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Further Reading (Optional)
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