
18/06/2014

CS 61C: Great Ideas in
Computer Architecture

MapReduce

Instructor: Alan Christopher

Summer 2014 -- Lecture #26

Review of Last Lecture (1/2)

• Warehouse Scale Computing
– Example of parallel processing in the post-PC era
– Servers on a rack, rack part of cluster
– Issues to handle include load balancing, failures,

power usage (sensitive to cost & energy efficiency)
– PUE = Total building power / IT equipment power

8/06/2014 Summer 2014 -- Lecture #26 2

Request-Level Parallelism (RLP)
In WSCs

• Hundreds or thousands of requests per sec
– Many users accessing popular Internet

services like web search, social
networking, …

– Such requests are largely independent
● Often involve read-mostly databases
● Rarely involve strict read–write data sharing or

synchronization across requests

• Computation easily partitioned within a
request and across different requests

8/05/2014 3Summer 2014 -- Lecture #25

Google Query-Serving
Architecture

8/05/2014 4Summer 2014 -- Lecture #25

Anatomy of a Web Search
• Google “Leonhard Euler”

8/05/2014 5Summer 2014 -- Lecture #25

Anatomy of a Web Search (1 of 3)

• Google “Leonhard Euler”
– Direct request to “closest” Google Warehouse Scale

Computer
– Front-end load balancer directs request to one of many

arrays (cluster of servers) within WSC
– Within array, select one of many Google Web Servers

(GWS) to handle the request and compose the response
pages

– GWS communicates with Index Servers to find
documents that contain the search words, “Leonhard”,
“Euler”, uses location of search as well

– Return document list with associated relevance score

8/05/2014 6Summer 2014 -- Lecture #25

Anatomy of a Web Search (2 of 3)

• In parallel,
– Ad system: run ad auction for bidders on

search terms
– Get images of various Leonhard Eulers

• Use docids (document IDs) to access indexed
documents

• Compose the page
– Result document extracts (with keyword in

context) ordered by relevance score
– Sponsored links (along the top) and

advertisements (along the sides)
8/05/2014 7Summer 2014 -- Lecture #25

Anatomy of a Web Search (3 of 3)

• Implementation strategy
– Randomly distribute the entries
– Make many copies of data (a.k.a. “replicas”)
– Load balance requests across replicas

• Redundant copies of indices and documents
– Breaks up hot spots, e.g. “Guardians of the Galaxy”
– Increases opportunities for request-level parallelism
– Makes the system more tolerant of failures

8/05/2014 8Summer 2014 -- Lecture #25

Agenda
• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 9Summer 2014 -- Lecture #26

Data-Level Parallelism (DLP)

• Multiple kinds:
– Lots of data in memory that can be operated on

in parallel (e.g. adding together 2 arrays)
– Lots of data on many disks that can be operated

on in parallel (e.g. searching for documents)

1) SIMD does Data-Level Parallelism (DLP) in
memory

2) Today’s lecture and Lab 12 does DLP across
many servers and disks using MapReduce

8/06/2014 10Summer 2014 -- Lecture #26

Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 11Summer 2014 -- Lecture #26

What is MapReduce?

• Simple data-parallel programming model
designed for scalability and fault-tolerance

• Pioneered by Google
– Processes >25 petabytes of data per day

• Popularized by open-source Hadoop
project

– Used at Yahoo!, Facebook, Amazon, …

8/06/2014 12Summer 2014 -- Lecture #26

What is MapReduce used
for?

• At Google:
– Index construction for Google Search
– Article clustering for Google News
– Statistical machine translation
– For computing multi-layer street maps

• At Yahoo!:
– “Web map” powering Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection

8/06/2014 13Summer 2014 -- Lecture #26

MapReduce Design Goals

1. Scalability to large data volumes:
– 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:
– Commodity machines (cheap, but unreliable)
– Commodity network
– Automatic fault-tolerance (fewer administrators)
– Easy to use (fewer programmers)

Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” 6th USENIX Symposium on Operating Systems Design and
Implementation, 2004. (optional reading, linked on course homepage – a
digestible CS paper at the 61C level)

8/06/2014 14Summer 2014 -- Lecture #26

MapReduce Processing:
“Divide and Conquer” (1/3)

• Apply Map function to user supplied
record of key/value pairs

– Slice data into “shards” or “splits” and
distribute to workers

– Compute set of intermediate key/value
pairs

map(in_key,in_val):
// DO WORK HERE
emit(interm_key,interm_val)

8/06/2014 15Summer 2014 -- Lecture #26

MapReduce Processing:
“Divide and Conquer” (2/3)

• Apply Reduce operation to all values
that share same key in order to
combine derived data properly

– Combines all intermediate values for a
particular key

– Produces a set of merged output values
reduce(interm_key,list(interm_val)):

// DO WORK HERE
emit(out_key, out_val)

8/06/2014 16Summer 2014 -- Lecture #26

MapReduce Processing:
“Divide and Conquer” (3/3)

• User supplies Map and Reduce
operations in functional model

– Focus on problem, let MapReduce
library deal with messy details

– Parallelization handled by
framework/library

– Fault tolerance via re-execution

8/06/2014 17Summer 2014 -- Lecture #26

Typical Hadoop Cluster
Aggregation switch

Rack switch

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth within rack, 8 Gbps out of rack
• Node specs (Yahoo terasort):

8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf

8/06/2014 18Summer 2014 -- Lecture #26

Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Execution Walkthrough
– Example 1: Word Count
– Example 2: PageRank (Time Permitting)

8/06/2014 19Summer 2014 -- Lecture #26

Administrivia

• Project 3 (partners) due Sunday 8/10
• Final Review – Sat 08/09, 2-5pm in 2060

VLSB
• Final – Fri 8/15, 9am-12pm, 155 Dwinelle

– MIPS Green Sheet provided again
– Two-sided handwritten cheat sheet

● Can use the back side of your midterm cheat
sheet!

8/06/2014 20Summer 2014 -- Lecture #26

Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 21Summer 2014 -- Lecture #26

The Combiner (Optional)

• One missing piece for our first example:
– Many times, the output of a single mapper can be

“compressed” to save on bandwidth and to
distribute work (usually more map tasks than
reduce tasks)

– To implement this, we have the combiner:

 combiner(interm_key,list(interm_val)):
 // DO WORK (usually like reducer)

 emit(interm_key2, interm_val2)

8/06/2014 Summer 2014 -- Lecture #26 22

Our Final Execution Sequence

• Map – Apply operations to all input
key, val

• Combine – Apply reducer operation,
but distributed across map tasks

• Reduce – Combine all values of a key
to produce desired output

8/06/2014 Summer 2014 -- Lecture #26 23

MapReduce Processing Example: Count Word
Occurrences (1/2)

• Pseudo Code: for each word in input, generate <key=word, value=1>

• Reduce sums all counts emitted for a particular word across all mappers

 map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1"); // Produce count of words

 combiner: (same as below reducer)

 reduce(String output_key, Iterator intermediate_values):

 // output_key: a word

 // intermediate_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += ParseInt(v); // get integer from keyvalue

 Emit(output_key, result);
8/06/2014 Summer 2014 -- Lecture #26 24

MapReduce Processing Example: Count Word
Occurrences (2/2)

8/06/2014 25

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

 Reduce 1 Reduce 2

is 1 that 2is 1,1 that 2,2is 1,1,2,2
it 2

that 2,2,1
not 2

is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

Summer 2014 -- Lecture #26

Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 26Summer 2014 -- Lecture #26

Execution Setup

• Map invocations distributed by partitioning input data into
M splits

– Typically 16 MB to 64 MB per piece

• Input processed in parallel on different servers
• Reduce invocations distributed by partitioning intermediate

key space into R pieces
– e.g. hash(key) mod R

• User picks M >> # servers, R > # servers
– Big M helps with load balancing, recovery from failure
– One output file per R invocation, so not too many

8/06/2014 Summer 2014 -- Lecture #26 27

MapReduce Execution

8/06/2014 28

Fine granularity
tasks: many
more map tasks
than machines

2000 servers =>
≈ 200,000 Map
Tasks, ≈ 5,000
Reduce tasks

Summer 2014 -- Lecture #26

8/06/2014 Summer 2014 -- Lecture #26 29

MapReduce Processing

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 30

1. MR 1st splits
the input files into
M “splits” then
starts many
copies of
program on
servers

Shuffle phase

8/06/2014 Summer 2014 -- Lecture #26 31

2. One copy (the
master) is special. The
rest are workers. The
master picks idle
workers and assigns
each 1 of M map tasks
or 1 of R reduce tasks.

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 32

3. A map worker reads the
input split. It parses
key/value pairs of the input
data and passes each pair
to the user-defined map
function.

(The intermediate
key/value pairs
produced by the map
function are buffered
in memory.)

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 33

4. Periodically, the
buffered pairs are written
to local disk, partitioned
into R regions by the
partitioning function.

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 34

5. When a reduce worker
has read all intermediate
data for its partition, it
sorts it by the intermediate
keys so that all occurrences
of the same key are
grouped together.

(The sorting is needed
because typically many
different keys map to
the same reduce task)

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 35

6. Reduce worker iterates
over sorted intermediate
data and for each unique
intermediate key, it passes
key and corresponding set
of values to the user’s
reduce function.

The output of the
reduce function is
appended to a final
output file for this
reduce partition.

Shuffle phase

MapReduce Processing

8/06/2014 Summer 2014 -- Lecture #26 36

7. When all map and reduce tasks
have been completed, the master
wakes up the user program.
The MapReduce call in user
program returns back to user
code.

Output of MR is in R
output files (1 per
reduce task, with file
names specified by
user); often passed into
another MR job.

Shuffle phase

MapReduce Processing

Technology Break

8/06/2014 37Summer 2014 -- Lecture #26

What Does the Master Do?

• For each map task and reduce task, keep track:
– State: idle, in-progress, or completed
– Identity of worker server (if not idle)

• For each completed map task
– Stores location and size of R intermediate files
– Updates files and size as corresponding map tasks

complete

• Location and size are pushed incrementally to
workers that have in-progress reduce tasks

8/06/2014 Summer 2014 -- Lecture #26 38

MapReduce Processing Time Line

• Master assigns map + reduce tasks to “worker” servers

• As soon as a map task finishes, worker server can be assigned a new map
or reduce task

• Data shuffle begins as soon as a given Map finishes

• Reduce task begins as soon as all data shuffles finish

• To tolerate faults, reassign task if a worker server “dies”

8/06/2014 39Summer 2014 -- Lecture #26

MapReduce Failure Handling

• On worker failure:
– Detect failure via periodic heartbeats
– Re-execute completed and in-progress map tasks
– Re-execute in progress reduce tasks
– Task completion committed through master

• Master failure:
– Protocols exist to handle (master failure unlikely),

but not covered here

• Robust: lost 1600 of 1800 machines once, but
finished fine

8/06/2014 40Summer 2014 -- Lecture #26

MapReduce Redundant
Execution

• Slow workers significantly lengthen completion
time

– Other jobs consuming resources on machine
– Bad disks with soft errors transfer data very slowly
– Weird things: processor caches disabled (!!)

• Solution: Near end of phase, spawn backup
copies of tasks

– Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion time
– 3% more resources, large tasks 30% faster

8/06/2014 41Summer 2014 -- Lecture #26

Towards the end, the master assigns
uncompleted tasks again; 1st to finish wins

Reducers can start reducing as soon as they
start to receive Map data

Reduce worker sorts by intermediate
keys to group all occurrences of same
key

MapReduce divides computers into 1 master
and N-1 workers; masters assigns MR tasks

(B)

(G)

(P)

(Y)

42

Question: Which statement is
NOT true about about
MapReduce?

Agenda

• Data Level Parallelism
• MapReduce

– Background
– Design
– Theory

• Administrivia
• More MapReduce

– The Combiner + Example 1: Word Count
– Execution Walkthrough
– Example 2: PageRank (Time Permitting)

8/06/2014 43Summer 2014 -- Lecture #26

PageRank: How Google Search
Works

• Earlier: RLP – how Google handles searching its huge
index

• Now: How does Google generate that index?
• PageRank is the famous algorithm behind the

“quality” of Google’s results
– Uses link structure to rank pages, instead of matching only

against content (keyword)
– Modern google search more sophisticated, but PageRank

still plays a role

8/06/2014 44Summer 2014 -- Lecture #26

A Quick Review of CS Theory:
Graphs

• Def: A set of objects
connected by links

• The “objects” are called
Nodes

• The “links” are called
Edges

• Nodes: {1, 2, 3, 4, 5, 6}
• Edges:

{(6, 4), (4, 5), (4, 3),
 (3, 2), (5, 2), (5, 1),
 (1, 2)}

8/06/2014 Summer 2014 -- Lecture #26 45

Directed Graphs

• Previously assumed that
all edges in the graph
were two-way

• Now we have one-way
edges:

• Nodes: Same as before
• Edges: (order matters)

– {(6, 4), (4, 5), (5, 1),
 (5, 2), (2, 1)}

8/06/2014 Summer 2014 -- Lecture #26 46

The Theory Behind PageRank

• The Internet is really a directed
graph:

– Nodes: webpages
– Edges: links between webpages

• Terms (Suppose we have a page A
that links to page B):

– Page A has a forward-link to page B
– Page B has a back-link from page A

8/06/2014 47Summer 2014 -- Lecture #26

The Magic Formula

8/06/2014 48Summer 2014 -- Lecture #26

The Magic Formula

8/06/2014 49Summer 2014 -- Lecture #26

Node u is the vertex (webpage) we’re
interested in computing the PageRank of

The Magic Formula

8/06/2014 50Summer 2014 -- Lecture #26

R’(u) is the PageRank of Node u

The Magic Formula

8/06/2014 51Summer 2014 -- Lecture #26

c is a normalization factor that we
can ignore for our purposes

The Magic Formula

8/06/2014 52Summer 2014 -- Lecture #26

E(u) is a “personalization” factor that
we can ignore for our purposes

The Magic Formula

8/06/2014 53Summer 2014 -- Lecture #26

We sum over all backlinks of u: the PageRank of
the website v linking to u divided by the number

of forward-links that v has

But wait! This is Recursive!

• Uh oh! We have a recursive formula with no
base-case

• We rely on convergence
– Choose some initial PageRank value for each

site

– Simultaneously compute/update PageRanks

– When our Delta is small between iterations:
● Stop, call it “good enough”

• An example of fixed point iteration (similar to
proj2, actually)

8/06/2014 54Summer 2014 -- Lecture #26

Sounds Easy. Why MapReduce?

• Assume in the best case that we’ve
crawled and captured the internet as a
series of (url, outgoing links) pairs

• We need about 50 iterations of the
PageRank algorithm for it to converge

• We quickly see that running it on one
machine is not viable

8/06/2014 55Summer 2014 -- Lecture #26

Building a Web Index using
PageRank

• Scrape Webpages
• Strip out content, keep only links (input is key

= url, value = links on page at url)
– This step is actually pushed into the

MapReduce

• Feed into PageRank Mapreduce
• Sort Documents by PageRank
• Post-process to build the indices that our

Google RLP example used

8/06/2014 56Summer 2014 -- Lecture #26

Using MapReduce to Compute
PageRank, Step 1

Map:
– Input:

● key = URL of
website

● val = source of
website

– Output for each
outgoing link:

● key = URL of
website

● val = outgoing link
url

Reduce:
– Input:

● key = URL of
website

● values = Iterable of
all outgoing links
from that website

– Output:
● key = URL of

website
● value = Starting

PageRank,
Outgoing links from
that website

8/06/2014 Summer 2014 -- Lecture #26 57

Using MapReduce to Compute
PageRank, Step 2

Map:
– Input:

● key = URL of website
● val = PageRank,

Outgoing links from that
website

– Output for each
outgoing link:

● key = Outgoing Link URL
● val = Original Website

URL, PageRank, #
Outgoing links

Reduce:
– Input:

● key = Outgoing Link URL
● values = Iterable of all

links to Outgoing Link
URL

– Output:
● key = Outgoing Link URL
● value = Newly computed

PageRank (using the
formula), Outgoing links
from document @
Outgoing Link URL

8/06/2014 Summer 2014 -- Lecture #26 58

Repeat this step until PageRank converges – chained MapReduce!

Using MapReduce to Compute
PageRank, Step 3

• Finally, we want to
sort by PageRank
to get a useful
index

• MapReduce’s built
in sorting makes
this easy!

Map:
– Input:

● key = Website URL
● value = PageRank,

Outgoing Links
– Output:

● key = PageRank
● value = Website

URL

8/06/2014 Summer 2014 -- Lecture #26 59

Using MapReduce to Compute
PageRank, Step 3

Reduce:
– In case we have

duplicate PageRanks
– Input:

● key = PageRank
● value = Iterable of

URLs with that
PageRank

– Output (for each URL
in the Iterable):

● key = PageRank
● value = Website URL

Since MapReduce
automatically sorts
the output from the
reducer and joins it
together We’re
done!

8/06/2014 Summer 2014 -- Lecture #26 60

Using the PageRanked Index

• Do our usual keyword search with RLP
implemented

• Take our results, sort by our pre-generated
PageRank values

• Send results to user!
• PageRank is still the basis for Google

Search
– (of course, there are many proprietary

enhancements in addition)

8/06/2014 Summer 2014 -- Lecture #26 61

Our algorithm chains multiple map/reduce
calls to compute our final set of PageRanks

PageRank generally converges after about 10
iterations of our algorithm

PageRank was designed to be
implemented using the MapReduce
framework

We can exactly compute PageRank using our
algorithm

(B)

(G)

(P)

(Y)

62

Question: Which of the following statements
is TRUE about our implementation of the
MapReduce PageRank Algorithm?

• MapReduce Data Parallelism
– Divide large data set into pieces for independent

parallel processing
– Combine and process intermediate results to

obtain final result

• Simple to Understand
– But we can still build complicated software
– Chaining lets us use the MapReduce paradigm for

many common graph and mathematical tasks

• MapReduce is a “Real-World” Tool
– Worker restart, monitoring to handle failures
– Google PageRank, Facebook Analytics

8/06/2014 63

Summary

Summer 2014 -- Lecture #26

• Some PageRank slides adapted from
http://www.cs.toronto.edu/~jasper/
PageRankForMapReduceSmall.pdf

• PageRank Paper:
– Lawrence Page, Sergey Brin, Rajeev

Motwani, Terry Winograd.
The PageRank Citation
Ranking: Bringing Order to the Web.

8/06/2014 64

Further Reading (Optional)

Summer 2014 -- Lecture #26

http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf
http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

	Slide 1
	Review of Last Lecture (1/2)
	Request-Level Parallelism (RLP)
	Google Query-Serving Architecture
	Anatomy of a Web Search
	Anatomy of a Web Search (1 of 3)
	Anatomy of a Web Search (2 of 3)
	Anatomy of a Web Search (3 of 3)
	Agenda
	Data-Level Parallelism (DLP)
	Agenda
	What is MapReduce?
	What is MapReduce used for?
	MapReduce Design Goals
	MapReduce Processing: “Divide and Conquer” (1/3)
	MapReduce Processing: “Divide and Conquer” (2/3)
	MapReduce Processing: “Divide and Conquer” (3/3)
	Typical Hadoop Cluster
	Agenda
	Administrivia
	Agenda
	The Combiner (Optional)
	Our Final Execution Sequence
	MapReduce Processing Example: Count Word Occurrences (1/2)
	MapReduce Processing Example: Count Word Occurrences (2/2)
	Agenda
	Execution Setup
	MapReduce Execution
	Slide 29
	MapReduce Processing
	Slide 31
	MapReduce Processing
	MapReduce Processing
	MapReduce Processing
	MapReduce Processing
	MapReduce Processing
	Get To Know Your Staff
	What Does the Master Do?
	MapReduce Processing Time Line
	MapReduce Failure Handling
	MapReduce Redundant Execution
	Slide 42
	Agenda
	PageRank: How Google Search Works
	A Quick Detour to CS Theory: Graphs
	Directed Graphs
	The Theory Behind PageRank
	The Magic Formula
	The Magic Formula
	The Magic Formula
	The Magic Formula
	The Magic Formula
	The Magic Formula
	But wait! This is Recursive!
	Sounds Easy. Why MapReduce?
	Building a Web Index using PageRank
	Using MapReduce to Compute PageRank, Step 1
	Using MapReduce to Compute PageRank, Step 2
	Using MapReduce to Compute PageRank, Step 3
	Using MapReduce to Compute PageRank, Step 3
	Using the PageRanked Index
	Slide 62
	Summary
	Further Reading (Optional)

